DNA

 

 


 

Customize your search:

E.g., 2017-08-22
E.g., 2017-08-22
E.g., 2017-08-22
Sep 11th 2017

This course introduces how the human body works and how it is more than the sum of its parts. The human body is made up of many individual parts that work together in a highly interactive and coordinated way. This course introduces the building blocks that make up the body, and how these are structured and maintained at a cellular level. We highlight the cardiovascular, hormonal and nervous systems, as critical coordination and control parts of the body. We investigate the structure of the musculoskeletal system, and how it helps us move through, and manipulate, our environment. We conclude by reviewing how the body replaces itself to create a new human being.

Average: 7 (13 votes)
Sep 11th 2017

Come and explore the basics of Microbiology and Forensic Science so you can better understand the world around you. Have you ever thought about infectious diseases and why we get infected? What is the causative agent? In this course you will be touring through four modules, starting by taking a close look at the bacterial cell structure and functions which will then lead you to the study of viruses. You will go through the differences in the different types of cells which will allow you to distinguish the two major groups of bacteria and techniques. Next, you will focus on Forensic Microbiology, its history and how this discipline has evolved. Finally, we will look at the latest molecular techniques used for detecting microbes’ genetic material.

Average: 6.9 (11 votes)
Aug 28th 2017

This course begins a series of classes illustrating the power of computing in modern biology. Please join us on the frontier of bioinformatics to look for hidden messages in DNA without ever needing to put on a lab coat.

Average: 7.7 (9 votes)

Aug 28th 2017

This course introduces you to the basic biology of modern genomics and the experimental tools that we use to measure it. We'll introduce the Central Dogma of Molecular Biology and cover how next-generation sequencing can be used to measure DNA, RNA, and epigenetic patterns. You'll also get an introduction to the key concepts in computing and data science that you'll need to understand how data from next-generation sequencing experiments are generated and analyzed.

Average: 6.2 (5 votes)
Aug 28th 2017

We will learn computational methods -- algorithms and data structures -- for analyzing DNA sequencing data. We will learn a little about DNA, genomics, and how DNA sequencing is used. We will use Python to implement key algorithms and data structures and to analyze real genomes and DNA sequencing datasets.

Average: 7.8 (8 votes)
Aug 28th 2017

After sequencing genomes, we would like to compare them. We will see that dynamic programming is a powerful algorithmic tool when we compare two genes (i.e., short sequences of DNA) or two proteins. When we "zoom out" to compare entire genomes, we will employ combinatorial algorithms.

Average: 5.4 (7 votes)

Aug 28th 2017

In this class, we will compare DNA from an individual against a reference human genome to find potentially disease-causing mutations. We will also learn how to identify the function of a protein even if it has been bombarded by so many mutations compared to similar proteins with known functions that it has become barely recognizable.

Average: 6.8 (5 votes)
Aug 28th 2017

Each mammalian cell has the same genes, yet performs distinct functions. This is achieved by epigenetic control of gene expression; the switching on and switching off of genes. This course will cover the principles of epigenetic control of gene expression, how epigenetic control contributes to cellular differentiation and development, and how it goes wrong in disease.

Average: 6.8 (12 votes)
Aug 21st 2017

Behavioral genetic methodologies from twin and adoption studies through DNA analysis will be described and applied to address longstanding questions about the origins of individual differences in behavioral traits.

Average: 6.3 (6 votes)
Aug 21st 2017

Learn how to align and analyze DNA sequences using web and software based tools to find mutations and other anomalies in genes and genomic sequences. Gene sequences and the rest of the genome play an important role in determining how an organism functions normally and reacts when situations change. DNA sequences can also be used to determine relationships between organisms and form the underpinnings of the Tree of Life.

No votes yet
Aug 14th 2017

What is a genome? A genome contains all of the information that a cell needs to develop, function, and reproduce itself, and all the information needed for those cells to come together to form a person, plant, or animal. Genomes contain an organism’s complete set of genes, and also the even tinier genetic structures that help regulate when and how those genes are used.

No votes yet

Aug 7th 2017

Курс «Введение в биоинформатику» адресован тем, кто хочет получить расширенное представление о том, что такое биоинформатика и как она помогает биологам и медикам в их работе. The course is aimed at those who would like to have a better idea of what bioinformatics is and how it helps biologists and medical scientists in research and clinical work.

Average: 5.3 (3 votes)