Statistics & Data Analysis

 

 


 

Data science is one of today’s fastest-growing fields. Become a Data Scientist in 2016 with Coursera.



Customize your search:

E.g., 2017-01-24
E.g., 2017-01-24
E.g., 2017-01-24
Feb 1st 2017

Digital images of earth’s surface produced by remote sensing are the basis of modern mapping. They are also used to create valuable information products across a spectrum of industries. This free online course is for everyone who is interested in applications of earth imagery to increase productivity, save money, protect the environment, and even save lives.

Average: 3.8 (5 votes)
Jan 27th 2017

This course focuses on one of the most important tools in your data analysis arsenal: regression analysis. Using either SAS or Python, you will begin with linear regression and then learn how to adapt when two variables do not present a clear linear relationship. You will examine multiple predictors of your outcome and be able to identify confounding variables, which can tell a more compelling story about your results. You will learn the assumptions underlying regression analysis, how to interpret regression coefficients, and how to use regression diagnostic plots and other tools to evaluate the quality of your regression model. Throughout the course, you will share with others the regression models you have developed and the stories they tell you.

Average: 6.1 (34 votes)
Jan 24th 2017

This course is an introduction into formal concept analysis (FCA), a mathematical theory oriented at applications in knowledge representation, knowledge acquisition, data analysis and visualization. It provides tools for understanding the data by representing it as a hierarchy of concepts or, more exactly, a concept lattice. FCA can help in processing a wide class of data types providing a framework in which various data analysis and knowledge acquisition techniques can be formulated. In this course, we focus on some of these techniques, as well as cover the theoretical foundations and algorithmic issues of FCA.

No votes yet
Jan 23rd 2017

The data science revolution has produced reams of new data from a wide variety of new sources. These new datasets are being used to answer new questions in way never before conceived. Visualization remains one of the most powerful ways draw conclusions from data, but the influx of new data types requires the development of new visualization techniques and building blocks.

Average: 7.5 (2 votes)
Jan 23rd 2017

After taking this course, the learner will be able to: Utilize various Application Programming Interface (API) services to collect data from different social media sources such as YouTube, Twitter, and Flickr; Process the collected data - primarily structured - using methods involving correlation, regression, and classification to derive insights about the sources and people who generated that data; Analyze unstructured data - primarily textual comments - for sentiments expressed in them; Use different tools for collecting, analyzing, and exploring social media data for research and development purposes.

No votes yet
Jan 23rd 2017

Accounting Analytics explores how financial statement data and non-financial metrics can be linked to financial performance. In this course, taught by Wharton’s acclaimed accounting professors, you’ll learn how data is used to assess what drives financial performance and to forecast future financial scenarios. While many accounting and financial organizations deliver data, accounting analytics deploys that data to deliver insight, and this course will explore the many areas in which accounting data provides insight into other business areas including consumer behavior predictions, corporate strategy, risk management, optimization, and more.

Average: 6.8 (11 votes)
Jan 23rd 2017

Financial Engineering is a multidisciplinary field involving finance and economics, mathematics, statistics, engineering and computational methods. The emphasis of FE & RM Part II will be on the use of simple stochastic models to (i) solve portfolio optimization problems (ii) price derivative securities in various asset classes including equities and credit and (iii) consider some advanced applications of financial engineering including algorithmic trading and the pricing of real options. We will also consider the role that financial engineering played during the financial crisis.

Average: 9.1 (7 votes)
Jan 23rd 2017

This course covers the analysis of Functional Magnetic Resonance Imaging (fMRI) data. It is a continuation of the course “Principles of fMRI, Part 1”

Average: 8 (2 votes)
Jan 23rd 2017

Learn about the most effective machine learning techniques, and gain practice implementing them and getting them to work for yourself. Machine learning is the science of getting computers to act without being explicitly programmed. In the past decade, machine learning has given us self-driving cars, practical speech recognition, effective web search, and a vastly improved understanding of the human genome.

Average: 7.6 (29 votes)
Jan 23rd 2017

Get an overview of the data, questions, and tools that data analysts and data scientists work with. This is the first course in the Johns Hopkins Data Science Specialisation. In this course you will get an introduction to the main tools and ideas in the data scientist's toolbox. The course gives an overview of the data, questions, and tools that data analysts and data scientists work with. There are two components to this course. The first is a conceptual introduction to the ideas behind turning data into actionable knowledge. The second is a practical introduction to the tools that will be used in the program like version control, markdown, git, Github, R, and Rstudio.

Average: 4.1 (21 votes)
Jan 23rd 2017

Linear models, as their name implies, relates an outcome to a set of predictors of interest using linear assumptions. Regression models, a subset of linear models, are the most important statistical analysis tool in a data scientist’s toolkit. This course covers regression analysis, least squares and inference using regression models. Special cases of the regression model, ANOVA and ANCOVA will be covered as well. Analysis of residuals and variability will be investigated. The course will cover modern thinking on model selection and novel uses of regression models including scatterplot smoothing.

Average: 7.7 (6 votes)
Jan 23rd 2017

This course provides a rigorous introduction to the R programming language, with a particular focus on using R for software development in a data science setting. Whether you are part of a data science team or working individually within a community of developers, this course will give you the knowledge of R needed to make useful contributions in those settings.

Average: 3.8 (6 votes)
Jan 23rd 2017

Do you wish to know how to analyze and solve business and economic questions with data analysis tools? Then Econometrics by Erasmus University Rotterdam is the right course for you, as you learn how to translate data into models to make forecasts and to support decision making.

Average: 6.3 (3 votes)
Jan 23rd 2017

This course describes Bayesian statistics, in which one's inferences about parameters or hypotheses are updated as evidence accumulates. You will learn to use Bayes’ rule to transform prior probabilities into posterior probabilities, and be introduced to the underlying theory and perspective of the Bayesian paradigm.

No votes yet
Jan 23rd 2017

In business, data and algorithms create economic value when they reduce uncertainty about financially important outcomes. This course teaches the concepts and mathematical methods behind the most powerful and universal metrics used by Data Scientists to evaluate the uncertainty-reduction – or information gain - predictive models provide. We focus on the two most common types of predictive model - binary classification and linear regression - and you will learn metrics to quantify for yourself the exact reduction in uncertainty each can offer. These metrics are applicable to any form of model that uses new information to improve predictions cast in the form of a known probability distribution – the standard way of representing forecasts in data science.

Average: 10 (1 vote)
Jan 23rd 2017

Welcome to Data-driven Decision Making. In this course you'll get an introduction to Data Analytics and its role in business decisions. You'll learn why data is important and how it has evolved. You'll be introduced to “Big Data” and how it is used.

Average: 9 (2 votes)
Jan 23rd 2017

You will find this course exciting and rewarding if you already have a background in statistics, can use R or another programming language and are familiar with databases and data analysis techniques such as regression, classification, and clustering. However, it contains a number of recitals and R Studio tutorials which will consolidate your competences, enable you to play more freely with data and explore new features and statistical functions in R.

Average: 7 (1 vote)
Jan 23rd 2017

In this course, you will analyze and apply essential design principles to your Tableau visualizations. This course assumes you understand the tools within Tableau and have some knowledge of the fundamental concepts of data visualization.

No votes yet
Jan 23rd 2017

In this course you will learn how to program in R and how to use R for effective data analysis. You will learn how to install and configure software necessary for a statistical programming environment and describe generic programming language concepts as they are implemented in a high-level statistical language. The course covers practical issues in statistical computing which includes programming in R, reading data into R, accessing R packages, writing R functions, debugging, profiling R code, and organizing and commenting R code. Topics in statistical data analysis will provide working examples.

Average: 5.6 (24 votes)
Jan 23rd 2017

A data product is the production output from a statistical analysis. Data products automate complex analysis tasks or use technology to expand the utility of a data informed model, algorithm or inference. This course covers the basics of creating data products using Shiny, R packages, and interactive graphics. The course will focus on the statistical fundamentals of creating a data product that can be used to tell a story about data to a mass audience.

Average: 3.3 (12 votes)

Pages