Statistics & Data Analysis

 

 


 

Data science is one of today’s fastest-growing fields. Become a Data Scientist in 2016 with Coursera.



Customize your search:

E.g., 2017-06-22
E.g., 2017-06-22
E.g., 2017-06-22
Jun 19th 2017

Learn how advances in geospatial technology and analytical methods have changed how we do everything, and discover how to make maps and analyze geographic patterns using the latest tools.

Average: 9 (1 vote)
Jun 6th 2017

Le MOOC « Fondamentaux pour le big data » permet d'acquérir efficacement le niveau prérequis en informatique et en statistiques pour suivre des formations dans le domaine du big data. Le big data offre de nouvelles opportunités d’emplois au sein des entreprises et des administrations. De nombreuses formations préparant à ces opportunités de métiers existent. Le suivi de ces formations nécessite des connaissances de base en statistiques et en informatique que ce MOOC vous propose d’acquérir dans les domaines de l’analyse, algèbre, probabilités, statistiques, programmation Python et bases de données.

Average: 5.5 (6 votes)
Jun 5th 2017

Learn how to both design randomized evaluations and implement them in the field to measure the impact of social programs. A randomized evaluation, also known as a randomized controlled trial (RCT), field experiment or field trial, is a type of impact evaluation that uses random assignment to allocate resources, run programs, or apply policies as part of the study design.

No votes yet
Jun 5th 2017

Learn methods for harnessing and analyzing data to answer questions of cultural, social, economic, and policy interest. This statistics and data analysis course will introduce you to the essential notions of probability and statistics.

Average: 2 (2 votes)
Jun 2nd 2017

This course focuses on one of the most important tools in your data analysis arsenal: regression analysis. Using either SAS or Python, you will begin with linear regression and then learn how to adapt when two variables do not present a clear linear relationship. You will examine multiple predictors of your outcome and be able to identify confounding variables, which can tell a more compelling story about your results. You will learn the assumptions underlying regression analysis, how to interpret regression coefficients, and how to use regression diagnostic plots and other tools to evaluate the quality of your regression model. Throughout the course, you will share with others the regression models you have developed and the stories they tell you.

Average: 5.9 (41 votes)
Self Paced

Use R to learn fundamental statistical topics such as descriptive statistics and modeling. In this first part of a two part course, we’ll walk through the basics of statistical thinking – starting with an interesting question. Then, we’ll learn the correct statistical tool to help answer our question of interest – using R and hands-on Labs. Finally, we’ll learn how to interpret our findings and develop a meaningful conclusion.

Average: 8.5 (2 votes)
Self Paced

Use R to learn the fundamental statistical topic of basic inferential statistics. In the second part of a two part course, we’ll learn how to take data and use it to make reasonable and useful conclusions. You’ll learn the basics of statistical thinking – starting with an interesting question and some data.

Average: 6.5 (2 votes)
May 29th 2017

Confidence intervals and Hypothesis tests are very important tools in the Business Statistics toolbox. A mastery over these topics will help enhance your business decision making and allow you to understand and measure the extent of ‘risk’ or ‘uncertainty’ in various business processes.
This course advances your knowledge about Business Statistics by introducing you to Confidence Intervals and Hypothesis Testing.

No votes yet
May 29th 2017

Neurohacking describes how to use the R programming language and its associated package to perform manipulation, processing, and analysis of neuroimaging data. We focus on publicly-available structural magnetic resonance imaging (MRI). We discuss concepts such as inhomogeneity correction, image registration, and image visualization.

No votes yet
May 29th 2017

Regression Analysis is perhaps the single most important Business Statistics tool used in the industry. Regression is the engine behind a multitude of data analytics applications used for many forms of forecasting and prediction. This is the fourth course in the specialization, "Business Statistics and Analysis". The course introduces you to the very important tool known as Linear Regression. You will learn to apply various procedures such as dummy variable regressions, transforming variables, and interaction effects. All these are introduced and explained using easy to understand examples in Microsoft Excel.

No votes yet
May 29th 2017

Case Studies: Analyzing Sentiment & Loan Default Prediction
In our case study on analyzing sentiment, you will create models that predict a class (positive/negative sentiment) from input features (text of the reviews, user profile information,...). In our second case study for this course, loan default prediction, you will tackle financial data, and predict when a loan is likely to be risky or safe for the bank.

Average: 6.5 (4 votes)
May 29th 2017

In this course, you will learn best practices for how to use data analytics to make any company more competitive and more profitable. You will be able to recognize the most critical business metrics and distinguish them from mere data. You’ll get a clear picture of the vital but different roles business analysts, business data analysts, and data scientists each play in various types of companies. And you’ll know exactly what skills are required to be hired for, and succeed at, these high-demand jobs.

No votes yet
May 29th 2017

This course covers advanced topics in R programming that are necessary for developing powerful, robust, and reusable data science tools. Topics covered include functional programming in R, robust error handling, object oriented programming, profiling and benchmarking, debugging, and proper design of functions.

Average: 6.4 (5 votes)
May 29th 2017

Writing good code for data science is only part of the job. In order to maximizing the usefulness and reusability of data science software, code must be organized and distributed in a manner that adheres to community-based standards and provides a good user experience. This course covers the primary means by which R software is organized and distributed to others.

Average: 3 (1 vote)
May 29th 2017

In this third course of the specialization, we’ll drill deeper into the tools Tableau offers in the areas of charting, dates, table calculations and mapping. We’ll explore the best choices for charts, based on the type of data you are using. We’ll look at specific types of charts including scatter plots, Gantt charts, histograms, bullet charts and several others, and we’ll address charting guidelines.

Average: 5 (2 votes)
May 29th 2017

Case Study - Predicting Housing Prices
In our first case study, predicting house prices, you will create models that predict a continuous value (price) from input features (square footage, number of bedrooms and bathrooms,...). This is just one of the many places where regression can be applied. Other applications range from predicting health outcomes in medicine, stock prices in finance, and power usage in high-performance computing, to analyzing which regulators are important for gene expression.In this course, you will explore regularized linear regression models for the task of prediction and feature selection. You will be able to handle very large sets of features and select between models of various complexity. You will also analyze the impact of aspects of your data -- such as outliers -- on your selected models and predictions. To fit these models, you will implement optimization algorithms that scale to large datasets.

Average: 7.5 (4 votes)
May 29th 2017

One of the skills that characterizes great business data analysts is the ability to communicate practical implications of quantitative analyses to any kind of audience member. Even the most sophisticated statistical analyses are not useful to a business if they do not lead to actionable advice, or if the answers to those business questions are not conveyed in a way that non-technical people can understand. In this course you will learn how to become a master at communicating business-relevant implications of data analyses.

Average: 5.8 (5 votes)
May 29th 2017

By now you have definitely heard about data science and big data. In this one-week class, we will provide a crash course in what these terms mean and how they play a role in successful organizations. This class is for anyone who wants to learn what all the data science action is about, including those who will eventually need to manage data scientists. The goal is to get you up to speed as quickly as possible on data science without all the fluff. We've designed this course to be as convenient as possible without sacrificing any of the essentials.

Average: 7.2 (13 votes)
May 29th 2017

Statistical inference is the process of drawing conclusions about populations or scientific truths from data. There are many modes of performing inference including statistical modeling, data oriented strategies and explicit use of designs and randomization in analyses. Furthermore, there are broad theories (frequentists, Bayesian, likelihood, design based, …) and numerous complexities (missing data, observed and unobserved confounding, biases) for performing inference. A practitioner can often be left in a debilitating maze of techniques, philosophies and nuance.

Average: 7.1 (11 votes)
May 29th 2017

Do you have data and wonder what it can tell you? Do you need a deeper understanding of the core ways in which machine learning can improve your business? Do you want to be able to converse with specialists about anything from regression and classification to deep learning and recommender systems? In this course, you will get hands-on experience with machine learning from a series of practical case-studies.

Average: 6.5 (11 votes)

Pages