The course provides an introduction to statistics and data analysis. During the four week we will discus the most important methods and concepts of statistics.

STARTS

Mar 27th 2017

Created by:Delivered by:

Taught by:

In this course you will learn a whole lot of modern physics (classical and quantum) from basic computer programs that you will download, generalize, or write from scratch, discuss, and then hand in. Join in if you are curious (but not necessarily knowledgeable) about algorithms, and about the deep insights into science that you can obtain by the algorithmic approach.

Syllabus

Week 1: Monte Carlo algorithms (Direct sampling, Markov-chain sampling)

Week 2: Hard disks: From Classical Mechanics to Statistical Mechanics

Week 3: Entropic interactions and phase transitions

Week 4: Sampling and integration

Week 5: Density matrices and Path integrals (Quantum Statistical mechanics 1/3)

Week 6: Lévy Quantum Paths (Quantum Statistical mechanics 2/3)

Week 7: Bose-Einstein condensation (Quantum Statistical mechanics 3/3)

Week 8: Ising model - Enumerations and Monte Carlo algorithms

Week 9: Dynamic Monte Carlo, simulated annealing

Week 10: The Alpha and the Omega of Monte Carlo, Review, Party

Self-paced

The course provides an introduction to statistics and data analysis. During the four week we will discus the most important methods and concepts of statistics.

Self-Paced

Gain a solid understanding of statistics and basic probability, using Excel, and build on your data analysis and data science foundation. If you’re considering a career as a data analyst, you need to know about histograms, Pareto charts, Boxplots, Bayes’ theorem, and much more. In this applied statistics course, the second in our Microsoft Excel Data Analyst XSeries, use the powerful tools built into Excel, and explore the core principles of statistics and basic probability—from both the conceptual and applied perspectives.

Mar 27th 2017

Ce cours permet d’apprendre la statistique à l’aide du logiciel libre R. Le recours aux mathématiques est minimal. L’objectif est de savoir analyser des données, de comprendre ce que l’on fait, et de pouvoir communiquer ses résultats.

Mar 27th 2017

This course introduces you to sampling and exploring data, as well as basic probability theory and Bayes' rule. You will examine various types of sampling methods, and discuss how such methods can impact the scope of inference. A variety of exploratory data analysis techniques will be covered, including numeric summary statistics and basic data visualization.

Mar 27th 2017

A data product is the production output from a statistical analysis. Data products automate complex analysis tasks or use technology to expand the utility of a data informed model, algorithm or inference. This course covers the basics of creating data products using Shiny, R packages, and interactive graphics. The course will focus on the statistical fundamentals of creating a data product that can be used to tell a story about data to a mass audience.

Mar 27th 2017

Inferential statistics are concerned with making inferences based on relations found in the sample, to relations in the population. Inferential statistics help us decide, for example, whether the differences between groups that we see in our data are strong enough to provide support for our hypothesis that group differences exist in general, in the entire population.

Mar 27th 2017

This course covers the essential exploratory techniques for summarizing data. These techniques are typically applied before formal modeling commences and can help inform the development of more complex statistical models. Exploratory techniques are also important for eliminating or sharpening potential hypotheses about the world that can be addressed by the data. We will cover in detail the plotting systems in R as well as some of the basic principles of constructing data graphics. We will also cover some of the common multivariate statistical techniques used to visualize high-dimensional data.

Mar 27th 2017

Linear models, as their name implies, relates an outcome to a set of predictors of interest using linear assumptions. Regression models, a subset of linear models, are the most important statistical analysis tool in a data scientist’s toolkit. This course covers regression analysis, least squares and inference using regression models. Special cases of the regression model, ANOVA and ANCOVA will be covered as well. Analysis of residuals and variability will be investigated. The course will cover modern thinking on model selection and novel uses of regression models including scatterplot smoothing.

Mar 27th 2017

Understanding statistics is essential to understand research in the social and behavioral sciences. In this course you will learn the basics of statistics; not just how to calculate them, but also how to evaluate them. This course will also prepare you for the next course in the specialization - the course Inferential Statistics.

Mar 27th 2017

Statistical inference is the process of drawing conclusions about populations or scientific truths from data. There are many modes of performing inference including statistical modeling, data oriented strategies and explicit use of designs and randomization in analyses. Furthermore, there are broad theories (frequentists, Bayesian, likelihood, design based, …) and numerous complexities (missing data, observed and unobserved confounding, biases) for performing inference. A practitioner can often be left in a debilitating maze of techniques, philosophies and nuance.

Multiple Criteria

Self-Paced MOOCs

MOOC List Coupon Discount

Providers and Categories

University / Entity

Instructor

Country

Language

Type of Certificate

Tag

Self-Paced MOOCs

MOOC List Coupon Discount

Providers and Categories

University / Entity

Instructor

Country

Language

Type of Certificate

Tag

“MOOC List” is an aggregator (directory) of Massive Open Online Courses (MOOCs) from different providers.

For more information please see our FAQs.

Terms / Privacy Policy | Contact Us

For more information please see our FAQs.

Terms / Privacy Policy | Contact Us

- MOOC stands for a Massive Open Online Course.
- It is an online course aimed at large-scale participation and open (free) access via the internet.
- They are similar to university courses, but do not tend to offer academic credit.
- A number of web-based platforms (providers Aka initiatives) supported by top universities and colleges offer MOOCs in a wide range of subjects.
- How to Be a Successful MOOC Student - MOOCs – Massive Open Online Courses – enable students around the world to take university courses online. This guide, by the instructors of edX’s most successful MOOC in 2013-2014, Principles of Written English (based on both enrollments and rate of completion), advises current and future students how to get the most out of their online study, covering areas such as what types of courses are offered and who offers them, what resources students need, how to register, how to work effectively with other students, how to interact with professors and staff, and how to handle assignments. This second edition offers a new chapter on how to stay motivated. This book is suitable for both native and non-native speakers of English, and is applicable to MOOC classes on any subject (and indeed, for just about any type of online study).