Machine Learning

 

 


 

Customize your search:

E.g., 2016-12-08
E.g., 2016-12-08
E.g., 2016-12-08
Dec 12th 2016

Are you interested in predicting future outcomes using your data? This course helps you do just that! Machine learning is the process of developing, testing, and applying predictive algorithms to achieve this goal. Make sure to familiarize yourself with course 3 of this specialization before diving into these machine learning concepts. Building on Course 3, which introduces students to integral supervised machine learning concepts, this course will provide an overview of many additional concepts, techniques, and algorithms in machine learning, from basic classification to decision trees and clustering.

Average: 6.9 (7 votes)
Dec 12th 2016

One of the most common tasks performed by data scientists and data analysts are prediction and machine learning. This course will cover the basic components of building and applying prediction functions with an emphasis on practical applications. The course will provide basic grounding in concepts such as training and tests sets, overfitting, and error rates. The course will also introduce a range of model based and algorithmic machine learning methods including regression, classification trees, Naive Bayes, and random forests. The course will cover the complete process of building prediction functions including data collection, feature creation, algorithms, and evaluation.

Average: 5.4 (12 votes)
Dec 12th 2016

You've learned the basic algorithms now and are ready to step into the area of more complex problems and algorithms to solve them. Advanced algorithms build upon basic ones and use new ideas. We will start with networks flows which are used in more obvious applications such as optimal matchings, finding disjoint paths and flight scheduling as well as more surprising ones like image segmentation in computer vision or finding dense clusters in the advertiser-search query graphs at search engines. We then proceed to linear programming with applications in optimizing budget allocation, portfolio optimization, finding the cheapest diet satisfying all requirements, call routing in telecommunications and many others. Next we discuss inherently hard problems for which no exact good solutions are known (and not likely to be found) and how to solve them approximately in a reasonable time. We finish with some applications to Big Data and Machine Learning which are heavy on algorithms right now.

Average: 6.4 (10 votes)
Dec 12th 2016

Case Studies: Finding Similar Documents. A reader is interested in a specific news article and you want to find similar articles to recommend. What is the right notion of similarity? Moreover, what if there are millions of other documents? Each time you want to a retrieve a new document, do you need to search through all other documents? How do you group similar documents together? How do you discover new, emerging topics that the documents cover?

Average: 8.7 (3 votes)
Dec 12th 2016

Have you ever had the perfect data science experience? The data pull went perfectly. There were no merging errors or missing data. Hypotheses were clearly defined prior to analyses. Randomization was performed for the treatment of interest. The analytic plan was outlined prior to analysis and followed exactly. The conclusions were clear and actionable decisions were obvious. Has that every happened to you? Of course not. Data analysis in real life is messy. How does one manage a team facing real data analyses? In this one-week course, we contrast the ideal with what happens in real life. By contrasting the ideal, you will learn key concepts that will help you manage real life analyses.

Average: 7.8 (5 votes)
Dec 12th 2016

By now you have definitely heard about data science and big data. In this one-week class, we will provide a crash course in what these terms mean and how they play a role in successful organizations. This class is for anyone who wants to learn what all the data science action is about, including those who will eventually need to manage data scientists. The goal is to get you up to speed as quickly as possible on data science without all the fluff. We've designed this course to be as convenient as possible without sacrificing any of the essentials.

Average: 7.9 (7 votes)
Dec 12th 2016

Learn about the most effective machine learning techniques, and gain practice implementing them and getting them to work for yourself. Machine learning is the science of getting computers to act without being explicitly programmed. In the past decade, machine learning has given us self-driving cars, practical speech recognition, effective web search, and a vastly improved understanding of the human genome.

Average: 7.8 (26 votes)
Dec 12th 2016

Case Studies: Analyzing Sentiment & Loan Default Prediction
In our case study on analyzing sentiment, you will create models that predict a class (positive/negative sentiment) from input features (text of the reviews, user profile information,...). In our second case study for this course, loan default prediction, you will tackle financial data, and predict when a loan is likely to be risky or safe for the bank.

Average: 8 (3 votes)
Dec 12th 2016

In this course, you will learn the fundamental techniques for making personalized recommendations through nearest-neighbor techniques. First you will learn user-user collaborative filtering, an algorithm that identifies other people with similar tastes to a target user and combines their ratings to make recommendations for that user.

Average: 6.5 (2 votes)
Dec 12th 2016

Case Study - Predicting Housing Prices
In our first case study, predicting house prices, you will create models that predict a continuous value (price) from input features (square footage, number of bedrooms and bathrooms,...). This is just one of the many places where regression can be applied. Other applications range from predicting health outcomes in medicine, stock prices in finance, and power usage in high-performance computing, to analyzing which regulators are important for gene expression.In this course, you will explore regularized linear regression models for the task of prediction and feature selection. You will be able to handle very large sets of features and select between models of various complexity. You will also analyze the impact of aspects of your data -- such as outliers -- on your selected models and predictions. To fit these models, you will implement optimization algorithms that scale to large datasets.

Average: 7 (3 votes)
Dec 12th 2016

Do you have data and wonder what it can tell you? Do you need a deeper understanding of the core ways in which machine learning can improve your business? Do you want to be able to converse with specialists about anything from regression and classification to deep learning and recommender systems? In this course, you will get hands-on experience with machine learning from a series of practical case-studies.

Average: 5.4 (8 votes)
Dec 5th 2016

This course, which is designed to serve as the first course in the Recommender Systems specialization, introduces the concept of recommender systems, reviews several examples in detail, and leads you through non-personalized recommendation using summary statistics and product associations, basic stereotype-based or demographic recommendations, and content-based filtering recommendations.

Average: 8.5 (2 votes)
Dec 5th 2016

Welcome to the Cloud Computing Applications course, the second part of a two-course series designed to give you a comprehensive view on the world of Cloud Computing and Big Data!

Average: 7.8 (4 votes)
Dec 5th 2016

Want to learn the basics of large-scale data processing? Need to make predictive models but don’t know the right tools? This course will introduce you to open source tools you can use for parallel, distributed and scalable machine learning.

Average: 9 (3 votes)
Nov 28th 2016

Learn about artificial neural networks and how they're being used for machine learning, as applied to speech and object recognition, image segmentation, modeling language and human motion, etc. We'll emphasize both the basic algorithms and the practical tricks needed to get them to work well.

No votes yet
Oct 24th 2016

Welcome to the Cloud Computing Applications course, the second part of a two-course series designed to give you a comprehensive view on the world of Cloud Computing and Big Data! In this second course we continue Cloud Computing Applications by exploring how the Cloud opens up data analytics of huge volumes of data that are static or streamed at high velocity and represent an enormous variety of information.

Average: 8.7 (3 votes)
Oct 18th 2016

Have you ever wanted to build a new musical instrument that responded to your gestures by making sound? Or create live visuals to accompany a dancer? Or create an interactive art installation that reacts to the movements or actions of an audience? If so, take this course! In this course, students will learn fundamental machine learning techniques that can be used to make sense of human gesture, musical audio, and other real-time data.

Average: 5.7 (3 votes)
Oct 10th 2016

Traverse the data analysis pipeline using advanced visualizations in Python, and make machine learning start working for you.

Average: 9 (2 votes)
Sep 26th 2016

Explore data visualization and exploration concepts with experts from MIT and Microsoft, and get an introduction to machine learning. Demand for data science talent is exploding. Develop your career as a data scientist, as you explore essential skills and principles with experts from MIT and Microsoft. In this data science course, you will learn key concepts in data acquisition, preparation, exploration, and visualization. Plus, look at examples of how to build a cloud data science solution using Azure Machine Learning, R, and Python.

No votes yet
Sep 18th 2016

Introductory Machine Learning course covering theory, algorithms and applications. Our focus is on real understanding, not just "knowing."

Average: 6 (2 votes)

Pages