Machine Learning

Sort options

Künstliche Intelligenz und Maschinelles Lernen in der Praxis (openHPI)

Oct 6th 2021
Künstliche Intelligenz und Maschinelles Lernen in der Praxis (openHPI)
Free Course
Categories
Effort
Languages
Alle reden über “Maschinelles Lernen”, "Neuronale Netze", "Künstliche Intelligenz" und "Deep Learning - doch wie diese Techniken genau in der Praxis funktionieren und eingesetzt werden, erfahren Sie in diesem weiterführenden openHPI Kurs. In diesem vierwöchigen Gratis-Kurs können Jugendliche und andere Interessierte ohne Programmier-Erfahrung und technisches Hintergrundwissen lernen, wie Machine [...]
0
No votes yet

Analítica avanzada y seguridad cibernética (edX)

La digitalización del sector energético brinda una gran oportunidad para alcanzar una matriz energética diversificada y sostenible. Sin embargo existen grandes retos por delante, los cuales pueden ser superados gracias a los avances en los sistemas de analítica avanzada. Por otra parte, la digitalización del sector energético requiere la [...]
0
No votes yet

Intelligent Systems: An Introduction to Deep Learning and Autonomous Systems (FutureLearn)

Discover the benefits and risks of deep learning and its uses in systems such as assistive technology and facial recognition. Delve into the inner workings of deep learning. From Ada Lovelace until the first decade of this century, we have relied on expert computer programmers to design and write [...]
0
No votes yet

Mejora tu Negocio con Inteligencia Artificial (edX)

Optimiza tu negocio con las nuevas herramientas de inteligencia artificial para brindar una mejor experiencia a tus clientes. La AI o inteligencia artificial, el internet de las cosas, el Big Data, los asistentes virtuales y las tecnologías digitales han cambiado las reglas del juego en el mundo de los [...]
0
No votes yet

IoT Systems and Industrial Applications with Design Thinking (edX)

The first MOOC to provide a comprehensive introduction to Internet of Things (IoT) including the fundamental business aspects needed to define IoT related products. Internet of Things (IoT) and smart connected devices have radically changed the way our world works and how companies operate and create new [...]
0
No votes yet

Data Analysis: Statistical Modeling and Computation in Applications (edX)

Aug 30th 2021
Data Analysis: Statistical Modeling and Computation in Applications (edX)
Course Auditing
Categories
Effort
Languages
A hands-on introduction to the interplay between statistics and computation for the analysis of real data. -- Part of the MITx MicroMasters program in Statistics and Data Science. Data science requires multi-disciplinary skills ranging from mathematics, statistics, machine learning, problem solving to programming, visualization, and communication skills. In this [...]
0
No votes yet

Robotic process and intelligent automation for finance (edX)

In this course we explain how automation can play a key role in delivering the requirement to have robust processes and clean data. By using automation tools and machine learning, finance leaders can identify, implement and configure the right solutions for their organisation. It also shows how tools, such [...]
0
No votes yet

Computing for Data Analysis (edX)

A hands-on introduction to basic programming principles and practice relevant to modern data analysis, data mining, and machine learning. The modern data analysis pipeline involves collection, preprocessing, storage, analysis, and interactive visualization of data. In the course, you’ll see how computing and mathematics come together. For instance, “under the [...]
3
Average: 3 ( 3 votes )

Data Science for Construction, Architecture and Engineering (edX)

This course is an Introduction to Data Science for Built Environment Professions. You will learn practical skills targeted at building industry professionals with an emphasis on basic Python programming, the Pandas and scikit-learn libraries, and Colaboratory Juptyer notebooks.
0
No votes yet

Introduction to Machine Learning in Sports Analytics (Coursera)

In this course students will explore supervised machine learning techniques using the python scikit learn (sklearn) toolkit and real-world athletic data to understand both machine learning algorithms and how to predict athletic outcomes. Building on the previous courses in the specialization, students will apply methods such as support vector [...]
0
No votes yet