Fundamentals of Biomedical Imaging: Ultrasounds, X-ray, positron emission tomography (PET) and applications (edX)

Fundamentals of Biomedical Imaging: Ultrasounds, X-ray, positron emission tomography (PET) and applications (edX)
Course Auditing
Categories
Effort
Certification
Languages
It is recommended to have followed introductory physics at the Bachelor level and to be familiar with the concept of Fourier transformation.
Misc

MOOC List is learner-supported. When you buy through links on our site, we may earn an affiliate commission.

Fundamentals of Biomedical Imaging: Ultrasounds, X-ray, positron emission tomography (PET) and applications (edX)
Learn how principles of basic science are integrated into major biomedical imaging modalities and the different techniques used, such as X-ray computed tomography (CT), ultrasounds and positron emission tomography (PET). This physics course covers the physical principles of major in vivo bio-imaging modalities and the different imaging techniques.

Class Deals by MOOC List - Click here and see edX's Active Discounts, Deals, and Promo Codes.

MOOC List is learner-supported. When you buy through links on our site, we may earn an affiliate commission.

After a short study of ultrasound imaging, you will learn about the different X-ray imaging techniques. The understanding of the interaction of X-rays with tissue will lead to the study of three different techniques:

- Computed Tomography (CT)

- Emission Tomography

- Positron Emission Tomography (PET)

This course shows how existing physical principles transcend into bio-imaging and establish an important link into life sciences, illustrating the contributions physics can make to life sciences. Practical examples will be shown to illustrate the respective imaging modality, its use, premise and limitations, and biological safety will be touched upon.

During this course, you will develop a good understanding of the mechanisms leading to tissue contrast of the bio-imaging modalities covered in this course, including the inner workings of the scanner and how they define the range of possible biomedical applications. You will be able to judge which imaging modality is adequate for specific life science needs and to understand the limits and promises of each modality.


What you'll learn:

- Understand the main imaging concepts that characterize the quality of imaging techniques for Signal (SNR) and Contrast (CNR).

- Understand the essential principles of ultrasound, X-ray imaging (CT), SPECT, PET.

- For each of the above techniques, be aware of the factors limiting the image quality.

- Describe/analyse typical applications.

- Recognize the imaging technique used to produce a given image.


Syllabus


1. Introduction to the course, importance and essential elements of bio-imaging.

2. Ultrasound imaging; ionizing radiation and its generation.

3. X-ray imaging - when the photon bumps into living tissue, radioprotection primer.

4. Computed tomography - from projection to image.

5. Emission tomography - what are tracers and how to trace them in your body, x-ray detection, scintillation principle.

6. Positron emission tomography (PET) - imaging anti-matter annihilation.

7. Tracer kinetics - modeling of imaging data.



0
No votes yet

MOOC List is learner-supported. When you buy through links on our site, we may earn an affiliate commission.

Course Auditing
142.00 EUR
It is recommended to have followed introductory physics at the Bachelor level and to be familiar with the concept of Fourier transformation.

MOOC List is learner-supported. When you buy through links on our site, we may earn an affiliate commission.