Microstructural Evolution of Materials Part 2: Defects and Diffusion (edX)

Microstructural Evolution of Materials Part 2: Defects and Diffusion (edX)
Course Auditing
Categories
Effort
Certification
Languages
Misc

MOOC List is learner-supported. When you buy through links on our site, we may earn an affiliate commission.

Microstructural Evolution of Materials Part 2: Defects and Diffusion (edX)
Discover the principles of point defect evolution that explain materials science phenomena. This series introduces various kinetic phenomena in various classes of materials. The course explains how materials develop different microstructure based on different processing techniques, and it relates these microstructures to the properties of the material.

MOOC List is learner-supported. When you buy through links on our site, we may earn an affiliate commission.

This module is Part 2 of a four-part series on the Microstructural Evolution in Materials. Taken together, these four modules provide similar content to the MIT Course 3.022: Microstructural Evolution of Materials.

Microstructural Evolution of Materials is intended for engineering and science students and professionals with an interest in materials statistics, kinetics, and microstructural transformations.

Part 1 of the course will introduce important concepts in statistical mechanics that are especially relevant to materials scientists. Topics include solid solutions, the canonical ensemble and heat capacity.

Part 2 of the course focuses on point defect evolution, including diffusion, substitutional diffusion, ionic defects, and ionic conductivity.

Part 3 of the course discusses surfaces and surface-driven reactions. Topics include surface energy, faceted and non-faceted growth, and growth and ripening.

Part 4 of the course focuses on phase transformations, including nucleation and growth, precipitate growth, interface stability, and glass transition.


What you'll learn

At the end of this course, you will be able to:

- Understand the microscopic mechanisms that govern diffusion

- Explain how ion exchange can be used to chemically strengthen glass

- Predict the charge carrier concentration in various charge compensation regimes using the Brouwer approximation


Prerequisites

Diffusion

- Fick’s First Law of Diffusion

- The Diffusion Coefficient

- Fick’s Second Law of Diffusion

- Analytic Solutions to Fick’s Second Law


Diffusion Examples

- Example #1: Meat Processing

- Example #2: Doping of Semiconductors

- Example #3: Chemical Strengthening of Glass


Self-Diffusion

- Kinetics of Substitutional Self-Diffusion

- Example: Substitutional Self-Diffusion in Gold


Substitutional Diffusion

- Vacancy Diffusion

- Vacancy Sources and Sinks

- Kirkendall Effect

- Motion of Crystal Planes

- Interdiffusion in Ionic Solids


Ionic Defects & Defect Reactions

- Types of Point Defects

- Kröger-Vink Notation

- Defect Reactions

- Equilibrium Constant for Defect Reaction

- Charge Compensation in Ionic Solids

- Charge Compensation in Non-Stoichiometric Solids

The Brouwer Approximation

- Introduction to the Brouwer Approximation

- Brouwer Diagrams

- F-Centers


Ionic Conductivity

- An Introduction to Ionic Conductivity

- Applications of Ionic Conductors



MOOC List is learner-supported. When you buy through links on our site, we may earn an affiliate commission.

Course Auditing
41.00 EUR

MOOC List is learner-supported. When you buy through links on our site, we may earn an affiliate commission.