Exploratory Data Analysis

 

 


 

Customize your search:

E.g., 2017-04-26
E.g., 2017-04-26
E.g., 2017-04-26
May 1st 2017

With marketers are poised to be the largest users of data within the organization, there is a need to make sense of the variety of consumer data that the organization collects. Surveys, transaction histories and billing records can all provide insight into consumers’ future behavior, provided that they are interpreted correctly.

No votes yet
May 1st 2017

The value of IoT can be found within the analysis of data gathered from the system under observation, where insights gained can have direct impact on business and operational transformation. Through analysis data correlation, patterns, trends, and other insight are discovered. Insight leads to better communication between stakeholders, or actionable insights, which can be used to raise alerts or send commands, back to IoT devices. With a focus on the topic of Exploratory Data Analysis, the course provides an in-depth look at mathematical foundations of basic statistical measures, and how they can be used in conjunction with advanced charting libraries to make use of the world’s best pattern recognition system – the human brain.

Average: 5 (1 vote)
May 1st 2017

This course covers the essential exploratory techniques for summarizing data. These techniques are typically applied before formal modeling commences and can help inform the development of more complex statistical models. Exploratory techniques are also important for eliminating or sharpening potential hypotheses about the world that can be addressed by the data. We will cover in detail the plotting systems in R as well as some of the basic principles of constructing data graphics. We will also cover some of the common multivariate statistical techniques used to visualize high-dimensional data.

Average: 7.2 (5 votes)
Apr 24th 2017

This course introduces you to sampling and exploring data, as well as basic probability theory and Bayes' rule. You will examine various types of sampling methods, and discuss how such methods can impact the scope of inference. A variety of exploratory data analysis techniques will be covered, including numeric summary statistics and basic data visualization.

Average: 8.3 (6 votes)
Apr 24th 2017

This course will expose you to the data analytics practices executed in the business. We will explore such key areas of data analytics as the analytical process, how data is created, stored, and accessed, and how the organization works with data and creates the environment in which analytics can flourish.

Average: 5 (1 vote)
Feb 27th 2017

Exploratory multivariate data analysis is studied and teached in a French-way since a long time in France. This course focuses on four essential and basic methods, those with the largest potential in terms of applications: principal component analysis (PCA) when variables are quantitative, correspondence analysis (CA) and multiple correspondence analysis (MCA) when variables are categorical and clustering. This course has been designed for scientists whose aim is not to become statisticians but who feel the need to analyze the data themselves. It is therefore addressed to practitioners who are confronted with the analysis of data in marketing, surveys, ecology, biology, geography, etc.

No votes yet
Jul 11th 2016

Learn the underlying principles required to develop scalable machine learning pipelines and gain hands-on experience using Apache Spark. Machine learning aims to extract knowledge from data, relying on fundamental concepts in computer science, statistics, probability and optimization.

Average: 7.8 (4 votes)
Oct 15th 2015

An introduction to basic statistical concepts and R programming skills necessary for analyzing data in the life sciences.

No votes yet
Self Paced

Investigate, Visualize, and Summarize Data Using R.

Average: 3.7 (9 votes)