MOOC List is learner-supported. When you buy through links on our site, we may earn an affiliate commission.

MOOC List is learner-supported. When you buy through links on our site, we may earn an affiliate commission.
In the second half of the course, you will learn about logistic regression, which is the counterpart of linear regression, when the response variable is categorical. You will also be introduced to naive Bayes; a very intuitive, probabilistic modeling technique.
This course is part of the Predictive Analytics using Python MicroMasters.
What you'll learn
In this course, you will:
Discover how predictive models influence real-world business scenarios
Translate business challenges into predictive modeling solutions
Develop experience with implementing theoretic models in Python
Syllabus
Week 1: Simple Linear Regression
Week 2: Multiple Linear Regression
Week 3: Extensions and Applications
Week 4: Introduction to Naive Bayes
Week 5: Logistic Regression
Week 6: Estimation and Comparison
Prerequisites
You should be familiar with an undergraduate level, or have a background, in mathematics and statistics. Previous experience with a procedural programming language is beneficial (e.g. Python, C, Java, Visual Basic).
Learners pursuing the MicroMasters programme are strongly recommended to complete PA1.1x Introduction to Predictive Analytics using Python and PA1.2x Successfully Evaluating Predictive Modelling on the verified track prior to undertaking this course.
MOOC List is learner-supported. When you buy through links on our site, we may earn an affiliate commission.
MOOC List is learner-supported. When you buy through links on our site, we may earn an affiliate commission.