Introduction to Data Analytics (Coursera)

Introduction to Data Analytics (Coursera)
Course Auditing
Categories
Effort
Certification
Languages
Misc

MOOC List is learner-supported. When you buy through links on our site, we may earn an affiliate commission.

Introduction to Data Analytics (Coursera)
This course presents a gentle introduction into the concepts of data analysis, the role of a Data Analyst, and the tools that are used to perform daily functions. You will gain an understanding of the data ecosystem and the fundamentals of data analysis, such as data gathering or data mining. You will then learn the soft skills that are required to effectively communicate your data to stakeholders, and how mastering these skills can give you the option to become a data driven decision maker.

Class Deals by MOOC List - Click here and see Coursera's Active Discounts, Deals, and Promo Codes.

MOOC List is learner-supported. When you buy through links on our site, we may earn an affiliate commission.

This course will help you to differentiate between the roles of a Data Analyst, Data Scientist, and Data Engineer. You will learn the responsibilities of a Data Analyst and exactly what data analysis entails. You will be able to summarize the data ecosystem, such as databases and data warehouses. You will then uncover the major vendors within the data ecosystem and explore the various tools on-premise and in the cloud. Continue this exciting journey and discover Big Data platforms such as Hadoop, Hive, and Spark. By the end of this course you will be able to visualize the daily life of a Data Analyst, understand the different career paths that are available for data analytics, and identify the many resources available for mastering this profession.

Throughout this course you will learn the key aspects to data analysis. You will begin to explore the fundamentals of gathering data, and learning how to identify your data sources. You will then learn how to clean, analyze, and share your data with the use of visualizations and dashboard tools. This all comes together in the final project where it will test your knowledge of the course material, explore what it means to be a Data Analyst, and provide a real-world scenario of data analysis.

This course does not require any prior data analysis, spreadsheet, or computer science experience. All you need to get started is basic computer literacy, high school level math, and access to a modern web browser such as Chrome or Firefox.

This course can be applied to multiple Specializations or Professional Certificates programs. Completing this course will count towards your learning in any of the following programs:

- Data Analysis and Visualization Foundations Specialization

- IBM Data Analyst Professional Certificate

- IBM Data Analytics with Excel and R Professional Certificate


Syllabus


WEEK 1

What is Data Analytics

In this module, you will learn about the different types of data analysis and the key steps in a data analysis process. You will gain an understanding of the different components of a modern data ecosystem, and the role Data Engineers, Data Analysts, Data Scientists, Business Analysts, and Business Intelligence Analysts play in this ecosystem. You will also learn about the role, responsibilities, and skillsets required to be a Data Analyst, and what a typical day in the life of a Data Analyst looks like.


WEEK 2

The Data Ecosystem

In this module, you will learn about the different types of data structures, file formats, sources of data, and the languages data professionals use in their day-to-day tasks. You will gain an understanding of various types of data repositories such as Databases, Data Warehouses, Data Marts, Data Lakes, and Data Pipelines. In addition, you will learn about the Extract, Transform, and Load (ETL) Process, which is used to extract, transform, and load data into data repositories. You will gain a basic understanding of Big Data and Big Data processing tools such as Hadoop, Hadoop Distributed File System (HDFS), Hive, and Spark.


WEEK 3

Gathering and Wrangling Data

In this module, you will learn about the process and steps involved in identifying, gathering, and importing data from disparate sources. You will learn about the tasks involved in wrangling and cleaning data in order to make it ready for analysis. In addition, you will gain an understanding of the different tools that can be used for gathering, importing, wrangling, and cleaning data, along with some of their characteristics, strengths, limitations, and applications.


WEEK 4

Mining & Visualizing Data and Communicating Results

In this module, you will learn about the role of Statistical Analysis in mining and visualizing data. You will learn about the various statistical and analytical tools and techniques you can use in order to gain a deeper understanding of your data. These tools help you to understand the patterns, trends, and correlations that exist in data. In addition, you will learn about the various types of data visualizations that can help you communicate and tell a compelling story with your data. You will also gain an understanding of the different tools that can be used for mining and visualizing data, along with some of their characteristics, strengths, limitations, and applications.


WEEK 5

Career Opportunities and Data Analysis in Action

In this module, you will learn about the different career opportunities in the field of Data Analysis and the different paths that you can take for getting skilled as a Data Analyst. At the end of the module, you will demonstrate your understanding of some of the basic tasks involved in gathering, wrangling, mining, analyzing, and visualizing data.



0
No votes yet

MOOC List is learner-supported. When you buy through links on our site, we may earn an affiliate commission.