Fluid-Solid Interactions happen when the motion of solids and fluids are coupled. The aim of the course is to give you the basic tools to be able to understand, predict and eventually mitigate these interactions.

What is fluid-solid interactions ? It is what happens when the motions of a fluid and of a solid are somehow coupled. This happens all the time, around you when leaves flutter in the wind, inside you when your heart beats, above you when wings of a plane vibrate, under the sea...

The idea behind this MOOC is to give you the basic tools to be able to predict and eventually mitigate things called flutter, galloping, sloshing, vortex-induced vibrations, added mass, to cite a few.

We are going to consider any possible domains of applications such as civil engineering, aerospace engineering, nuclear engineering , ocean engineering, biomechanics and even food processing !

This is why we called the course “Fundamentals of Fluid Solid Interactions ”. There are so many phenomena and so many models that we need to work together on the basic mechanisms .

If you want to see how fluid-solid interactions work, and be able to use that knowledge, join us !

Fundamentals of fluid mechanics and solid/structural mechanics are required. A knowledge in structural dynamics and vibration can be helpful, but is not required.

Learn the physics of how things move with this calculus-based course in mechanics. This course is an introduction to mechanics and follows a standard first-semester university physics course. You will learn fundamental mechanics concepts and mathematical problem solving required for all STEM fields.

Learn about kinematics and dynamics in this calculus-based physics course. Mechanics is the study of the physics of motion and how it relates to applied forces. It lays the foundation of understanding the world around us through the how and why of motion.

La mécanique des fluides est une partie de la mécanique et de la mécanique des milieux continus qui sont des disciplines majeures dans la formation d’ingénieurs. Le cours que nous proposons est une introduction à la mécanique des fluides, il est enseigné dans le cadre de la formation générale des élèves ingénieurs, il pourra être également très utile aux étudiants des universités ou aux autodidactes.

The Origins course tracks the origin of all things – from the Big Bang to the origin of the Solar System and the Earth. The course follows the evolution of life on our planet through deep geological time to present life forms.

This course is an introduction to the finite element method as applicable to a range of problems in physics and engineering sciences. The treatment is mathematical, but only for the purpose of clarifying the formulation. The emphasis is on coding up the formulations in a modern, open-source environment that can be expanded to other applications, subsequently.

Nanotechnology and nanosensors are broad, interdisciplinary areas that encompass (bio)chemistry, physics, biology, materials science, electrical engineering and more. The present course will provide a survey on some of the fundamental principles behind nanotechnology and nanomaterials and their vital role in novel sensing properties and applications. The course will discuss interesting interdisciplinary scientific and engineering knowledge at the nanoscale to understand fundamental physical differences at the nanosensors.

Cette partie traite la mécanique du solide indéformable. Dans certains établissements, cette matière est vue avec une application des torseurs. Aussi, nous avons inclus dans cette partie un supplément de formation sur ce sujet. Deux leçons introduisent les torseurs.

The movement of bodies in space (like spacecraft, satellites, and space stations) must be predicted and controlled with precision in order to ensure safety and efficacy. Kinematics is a field that develops descriptions and predictions of the motion of these bodies in 3D space. This course in Kinematics covers four major topic areas: an introduction to particle kinematics, a deep dive into rigid body kinematics in two parts (starting with classic descriptions of motion using the directional cosine matrix and Euler angles, and concluding with a review of modern descriptors like quaternions and Classical and Modified Rodrigues parameters).

Using publicly available data from NASA of actual satellite observations of astronomical x-ray sources, we explore some of the mysteries of the cosmos, including neutron stars, black holes, quasars and supernovae. We will analyze energy spectra and time series data to understand how these incredible objects work. We utilize an imaging tool called DS9 to explore the amazing diversity of astronomical observations that have made x-ray astronomy one of the most active and exciting fields of scientific investigation in the past 50 years.

In this course you will learn a whole lot of modern physics (classical and quantum) from basic computer programs that you will download, generalize, or write from scratch, discuss, and then hand in. Join in if you are curious (but not necessarily knowledgeable) about algorithms, and about the deep insights into science that you can obtain by the algorithmic approach.