Sep 18th 2017

Data, Models and Decisions in Business Analytics (edX)

Created by:Delivered by:

Learn fundamental tools and techniques for using data towards making business decisions in the face of uncertainty. In today’s world, managerial decisions are increasingly based on data-driven models and analysis using statistical and optimization methods that have dramatically changed the way businesses operate in most domains including service operations, marketing, transportation, and finance.

The main objectives of this course are the following:

- Introduce fundamental techniques towards a principled approach for data-driven decision-making.

- Quantitative modeling of dynamic nature of decision problems using historical data, and

- Learn various approaches for decision-making in the face of uncertainty

Topics covered include probability, statistics, regression, stochastic modeling, and linear, nonlinear and discrete optimization.

Most of the topics will be presented in the context of practical business applications to illustrate its usefulness in practice.

What you'll learn

- Fundamental concepts from probability, statistics, stochastic modeling, and optimization to develop systematic frameworks for decision-making in a dynamic setting

- How to use historical data to learn the underlying model and pattern

- Optimization methods and software to solve decision problems under uncertainty in business applications

Course Syllabus

- Introduction to Probability: Random variables; Normal, Binomial, Exponential distributions; applications

- Estimation: sampling; confidence intervals; hypothesis testing

- Regression: linear regression; dummy variables; applications

- Linear Optimization; Non-linear optimization; Discrete Optimization; applications

- Dynamic Optimization; decision trees

Already taken this course? Please rate.
No votes yet