Cluster Analysis (edX)

Start Date
No sessions available
Cluster Analysis (edX)
Course Auditing
Categories
Effort
Certification
Languages
Misc

MOOC List is learner-supported. When you buy through links on our site, we may earn an affiliate commission.

Cluster Analysis (edX)
Learn how to conduct a cluster analysis to discover important patterns in student behavior using the popular Weka data mining toolkit. In this course, you will learn the basics of cluster analysis, one of the most popular data mining methods for the discovery of patterns in learning data, and its application in learning analytics.

Class Deals by MOOC List - Click here and see edX's Active Discounts, Deals, and Promo Codes.

MOOC List is learner-supported. When you buy through links on our site, we may earn an affiliate commission.

Cluster analysis enables the identification of common, archetypal patterns of student interactions, which can lead to better understanding of student learning behaviors and provision of personalized feedback and interventions.

This course will have a strong hands-on component, as you will learn how to conduct a cluster analysis using the popular Weka data mining toolkit.

We will cover K-means and Hierarchical clustering techniques, which are two simple, yet widely used, cluster analysis methods. We will also review some of the published learning analytics studies that adopted cluster analysis and learn how to interpret the cluster analysis results.

Finally, we will also examine some of the more advanced techniques and identify certain practical challenges with cluster analysis, such as the selection of the optimal number of clusters and the validation of cluster analysis results.


What you'll learn

- Understand clustering and its use in learning analytics

- How to use the Weka toolkit to conduct cluster analysis

- Popular clustering algorithms (k-means, hierarchical clustering, EM clustering)

- How to interpret cluster analysis results

- How to use clustering in learning analytics to solve problems, such as improving student learning experiences and learning outcomes, increasing retention, or providing personalized feedback and support to students

- How to determine an optimal number of clusters for the analysis


Syllabus


Week 1: Introduction

Lectures:

Introduction to unsupervised machine learning methods

Introduction to clustering

Overview of clustering uses for learning analytics

Labs:

Introduction to Weka toolkit


Week 2: Overview of k-means and hierarchical clustering methods

Lectures:

K-means clustering theory

K-means full example

Hierarchical clustering theory

Hierarchical clustering full example

Labs:

Conducting k-means clustering using Weka

Conducting hierarchical clustering using Weka


Week 3: Practical considerations

Lectures:

How to choose the number of clusters

How to interpret clustering results

Overview of more advanced clustering methods

Labs:

Real-world cluster analysis walkthrough


Prerequisites

We highly recommend that you take the previous course in the series before beginning this course:

Social Network Analysis

This course is intended for those who have a bachelor’s degree and are interested in developing learning and data science skills for employment in education, corporate, nonprofit, and military sectors. Experience with programming and statistics will be beneficial to participants.



No votes yet

MOOC List is learner-supported. When you buy through links on our site, we may earn an affiliate commission.