A new and updated introduction to computer science as a tool to solve real-world analytical problems using Python 3.5

STARTS

Aug 14th 2017

Created by:Delivered by:

Taught by:

This is the continuation of Approximation algorithms, Part 1. Here you will learn linear programming duality applied to the design of some approximation algorithms, and semidefinite programming applied to Maxcut. By taking the two parts of this course, you will be exposed to a range of problems at the foundations of theoretical computer science, and to powerful design and analysis techniques.

Upon completion, you will be able to recognize, when faced with a new combinatorial optimization problem, whether it is close to one of a few known basic problems, and will be able to design linear programming relaxations and use randomized rounding to attempt to solve your own problem. The course content and in particular the homework is of a theoretical nature without any programming assignments.

This is the second of a two-part course on Approximation Algorithms.

Already taken this course?

Please rate.

Please rate.

or

Self Paced

A new and updated introduction to computer science as a tool to solve real-world analytical problems using Python 3.5

Aug 21st 2017

这门课程将帮助学生学习如何运用基础的数据结构和相关算法解决实际应用问题。

Aug 21st 2017

Experienced Computer Scientists analyze and solve computational problems at a level of abstraction that is beyond that of any particular programming language. This two-part class is designed to train students in the mathematical concepts and process of "Algorithmic Thinking", allowing them to build simpler, more efficient solutions to computational problems.

Aug 21st 2017

World and internet is full of textual information. We search for information using textual queries, we read websites, books, e-mails. All those are strings from the point of view of computer science. To make sense of all that information and make search efficient, search engines use many string algorithms. Moreover, the emerging field of personalized medicine uses many search algorithms to find disease-causing mutations in the human genome.

Aug 21st 2017

You've learned the basic algorithms now and are ready to step into the area of more complex problems and algorithms to solve them. Advanced algorithms build upon basic ones and use new ideas. We will start with networks flows which are used in more obvious applications such as optimal matchings, finding disjoint paths and flight scheduling as well as more surprising ones like image segmentation in computer vision or finding dense clusters in the advertiser-search query graphs at search engines. We then proceed to linear programming with applications in optimizing budget allocation, portfolio optimization, finding the cheapest diet satisfying all requirements, call routing in telecommunications and many others. Next we discuss inherently hard problems for which no exact good solutions are known (and not likely to be found) and how to solve them approximately in a reasonable time. We finish with some applications to Big Data and Machine Learning which are heavy on algorithms right now.

Aug 21st 2017

This course will cover the major techniques for mining and analyzing text data to discover interesting patterns, extract useful knowledge, and support decision making, with an emphasis on statistical approaches that can be generally applied to arbitrary text data in any natural language with no or minimum human effort.

Aug 21st 2017

Case Study - Predicting Housing Prices

In our first case study, predicting house prices, you will create models that predict a continuous value (price) from input features (square footage, number of bedrooms and bathrooms,...). This is just one of the many places where regression can be applied. Other applications range from predicting health outcomes in medicine, stock prices in finance, and power usage in high-performance computing, to analyzing which regulators are important for gene expression.In this course, you will explore regularized linear regression models for the task of prediction and feature selection. You will be able to handle very large sets of features and select between models of various complexity. You will also analyze the impact of aspects of your data -- such as outliers -- on your selected models and predictions. To fit these models, you will implement optimization algorithms that scale to large datasets.

Aug 21st 2017

If you have ever used a navigation service to find optimal route and estimate time to destination, you've used algorithms on graphs. Graphs arise in various real-world situations as there are road networks, computer networks and, most recently, social networks! If you're looking for the fastest time to get to work, cheapest way to connect set of computers into a network or efficient algorithm to automatically find communities and opinion leaders in Facebook, you're going to work with graphs and algorithms on graphs.

Aug 21st 2017

This course is for experienced C programmers who want to program in C++. The examples and exercises require a basic understanding of algorithms and object-oriented software.

Aug 21st 2017

Cloud computing systems today, whether open-source or used inside companies, are built using a common set of core techniques, algorithms, and design philosophies—all centered around distributed systems. Learn about such fundamental distributed computing "concepts" for cloud computing.

Aug 21st 2017

Experienced Computer Scientists analyze and solve computational problems at a level of abstraction that is beyond that of any particular programming language. This two-part class is designed to train students in the mathematical concepts and process of "Algorithmic Thinking", allowing them to build simpler, more efficient solutions to computational problems.

Aug 21st 2017

How do Java programs deal with vast quantities of data? Many of the data structures and algorithms that work with introductory toy examples break when applications process real, large data sets. Efficiency is critical, but how do we achieve it, and how do we even measure it? In this course, you will use and analyze data structures that are used in industry-level applications, such as linked lists, trees, and hashtables.

- Page 1
- ››

Multiple Criteria

Self-Paced MOOCs

MOOC List Coupon Discount

Providers and Categories

University / Entity

Instructor

Country

Language

Type of Certificate

Tag

Self-Paced MOOCs

MOOC List Coupon Discount

Providers and Categories

University / Entity

Instructor

Country

Language

Type of Certificate

Tag

“MOOC List” is an aggregator (directory) of Massive Open Online Courses (MOOCs) from different providers.

For more information please see our FAQs.

Terms / Privacy Policy | Contact Us

For more information please see our FAQs.

Terms / Privacy Policy | Contact Us

- MOOC stands for a Massive Open Online Course.
- It is an online course aimed at large-scale participation and open (free) access via the internet.
- They are similar to university courses, but do not tend to offer academic credit.
- A number of web-based platforms (providers Aka initiatives) supported by top universities and colleges offer MOOCs in a wide range of subjects.

MOOCs – Massive Open Online Courses – enable students around the world to take university courses online. This guide, by the instructors of edX’s most successful MOOC in 2013-2014, Principles of Written English (based on both enrollments and rate of completion), advises current and future students how to get the most out of their online study, covering areas such as what types of courses are offered and who offers them, what resources students need, how to register, how to work effectively with other students, how to interact with professors and staff, and how to handle assignments. This second edition offers a new chapter on how to stay motivated. This book is suitable for both native and non-native speakers of English, and is applicable to MOOC classes on any subject (and indeed, for just about any type of online study).