Introduction to PyMC3 for Bayesian Modeling and Inference (Coursera)

Introduction to PyMC3 for Bayesian Modeling and Inference (Coursera)
Course Auditing
Categories
Effort
Certification
Languages
1. Experience with Data Science using the PyData Stack of NumPy, SciPy, Pandas, Scikit-learn. 2. Course 1 & 2 in this Specialization.
Misc

MOOC List is learner-supported. When you buy through links on our site, we may earn an affiliate commission.

Introduction to PyMC3 for Bayesian Modeling and Inference (Coursera)
The objective of this course is to introduce PyMC3 for Bayesian Modeling and Inference, The attendees will start off by learning the the basics of PyMC3 and learn how to perform scalable inference for a variety of problems. This will be the final course in a specialization of three courses .Python and Jupyter notebooks will be used throughout this course to illustrate and perform Bayesian modeling with PyMC3..

Class Deals by MOOC List - Click here and see Coursera's Active Discounts, Deals, and Promo Codes.

MOOC List is learner-supported. When you buy through links on our site, we may earn an affiliate commission.

What You Will Learn

1. The PyMC3/ArViz framework for Bayesian modeling and inference

2. Build real-world models using PyMC3 and assess the quality of your models

Course 3 of 3 in the Introduction to Computational Statistics for Data Scientists Specialization.


Syllabus


WEEK 1

Introduction to PyMC3 - Part 1

This module serves as an introduction to the PyMC3 framework for probabilistic programming. It introduces some of the concepts related to modeling and the PyMC3 syntax. The visualization library ArViz, that is integrated into PyMC3, will also be introduced.


WEEK 2

Introduction to PyMC3 - Part 2

This module will teach the basics of using PyMC3 to solve regression and classification problems using PyMC3. It will also show how to deal with outliers in your data and create hierarchical models. Finally, a case study is presented to help apply everything that was learned in Module 1 and 2.


WEEK 3

Metrics in PyMC3

This module introduces various measures and metrics to assess the quality of the solutions inferred using PyMC3. Hands-on examples are used to illustrate how various methods and visualizations can be used in PyMC3.


WEEK 4

Modeling of COVID-19 cases using PyMC3

This is an ungraded final project. We will utilize everything that has been learned in this course to model the disease dynamics of COVID-19 using a SIR model. Utilizing real-life data, the goal would be to infer the parameters of the SIR model for COVID-19.



0
No votes yet

MOOC List is learner-supported. When you buy through links on our site, we may earn an affiliate commission.

Course Auditing
41.00 EUR/month
1. Experience with Data Science using the PyData Stack of NumPy, SciPy, Pandas, Scikit-learn. 2. Course 1 & 2 in this Specialization.

MOOC List is learner-supported. When you buy through links on our site, we may earn an affiliate commission.