Master Computer Science on Coursera



E.g., 2016-09-25
E.g., 2016-09-25
E.g., 2016-09-25
Oct 11th 2016

Learn everything you need to know to get started building a MongoDB-based app. This course will go over basic installation, JSON, schema design, querying, insertion of data, indexing and working with the Python driver. We will also cover working in sharded and replicated environments. In the course, you will build a blogging platform, backed by MongoDB. A brief Python introduction is included in the course.

Average: 5.4 (8 votes)
Sep 26th 2016

Dans ce cours, vous apprendrez à bien programmer en Python. On vous mènera des premiers pas dans le langage à l'étude des concepts les plus évolués au travers de nombreuses vidéos courtes, d'exercices et de mini-projets.

Average: 9 (2 votes)
Sep 26th 2016

Do you have data and wonder what it can tell you? Do you need a deeper understanding of the core ways in which machine learning can improve your business? Do you want to be able to converse with specialists about anything from regression and classification to deep learning and recommender systems? In this course, you will get hands-on experience with machine learning from a series of practical case-studies.

Average: 3.8 (5 votes)
Sep 26th 2016

This class provides an introduction to the Python programming language and the iPython notebook. This is the third course in the Genomic Big Data Science Specialization from Johns Hopkins University.

Average: 2.9 (7 votes)
Sep 26th 2016

The Raspberry Pi is a small, affordable single-board computer that you will use to design and develop fun and practical IoT devices while learning programming and computer hardware.

Average: 6.9 (8 votes)
Sep 26th 2016

Why do the prices of some companies’ stocks seem to move up and down together while others move separately? What does portfolio “diversification” really mean and how important is it? What should the price of a stock be? How can we discover and exploit the relationships between equity prices automatically?

No votes yet
Sep 26th 2016

In this course you will learn about audio signal processing methodologies that are specific for music and of use in real applications. You will learn to analyse, synthesize and transform sounds using the Python programming language.

No votes yet
Sep 26th 2016

This course will introduce the core data structures of the Python programming language. We will move past the basics of procedural programming and explore how we can use the Python built-in data structures such as lists, dictionaries, and tuples to perform increasingly complex data analysis.

Average: 4.6 (9 votes)
Sep 26th 2016

This course will introduce the learner to the basics of the python programming environment, including how to download and install python, expected fundamental python programming techniques, and how to find help with python programming questions. The course will also introduce data manipulation and cleaning techniques using the popular python pandas data science library and introduce the abstraction of the DataFrame as the central data structure for data analysis.

No votes yet
Sep 26th 2016

This course will show how one can treat the Internet as a source of data. We will scrape, parse, and read web data as well as access data using web APIs. We will work with HTML, XML, and JSON data formats in Python.

Average: 7 (9 votes)
Sep 26th 2016

This course will introduce students to the basics of the Structured Query Language (SQL) as well as basic database design for storing data as part of a multi-step data gathering, analysis, and processing effort. The course will use SQLite3 as its database. We will also build web crawlers and multi-step data gathering and visualization processes. We will use the D3.js library to do basic data visualization.

Average: 5.4 (24 votes)
Sep 26th 2016

Are you interested in learning how to program (in Python) within a scientific setting? This course will cover algorithms for solving various biological problems along with a handful of programming challenges helping you implement these algorithms in Python. Each of the four weeks in the course will consist of two required components. First, an interactive textbook provides Python programming challenges that arise from real biological problems.

No votes yet
Sep 26th 2016

This course aims to teach everyone the basics of programming computers using Python. We cover the basics of how one constructs a program from a series of simple instructions in Python.

Average: 7.4 (19 votes)
Sep 23rd 2016

This course focuses on one of the most important tools in your data analysis arsenal: regression analysis. Using either SAS or Python, you will begin with linear regression and then learn how to adapt when two variables do not present a clear linear relationship. You will examine multiple predictors of your outcome and be able to identify confounding variables, which can tell a more compelling story about your results. You will learn the assumptions underlying regression analysis, how to interpret regression coefficients, and how to use regression diagnostic plots and other tools to evaluate the quality of your regression model. Throughout the course, you will share with others the regression models you have developed and the stories they tell you.

Average: 6 (22 votes)
Sep 19th 2016

Experienced Computer Scientists analyze and solve computational problems at a level of abstraction that is beyond that of any particular programming language. This two-part class is designed to train students in the mathematical concepts and process of "Algorithmic Thinking", allowing them to build simpler, more efficient solutions to computational problems.

Average: 6 (6 votes)
Sep 19th 2016

Are you interested in predicting future outcomes using your data? This course helps you do just that! Machine learning is the process of developing, testing, and applying predictive algorithms to achieve this goal. Make sure to familiarize yourself with course 3 of this specialization before diving into these machine learning concepts. Building on Course 3, which introduces students to integral supervised machine learning concepts, this course will provide an overview of many additional concepts, techniques, and algorithms in machine learning, from basic classification to decision trees and clustering.

Average: 7.4 (5 votes)
Sep 19th 2016

In this course, you will develop and test hypotheses about your data. You will learn a variety of statistical tests, as well as strategies to know how to apply the appropriate one to your specific data and question. Using your choice of two powerful statistical software packages (SAS or Python), you will explore ANOVA, Chi-Square, and Pearson correlation analysis. This course will guide you through basic statistical principles to give you the tools to answer questions you have developed. Throughout the course, you will share your progress with others to gain valuable feedback and provide insight to other learners about their work.

Average: 8.5 (2 votes)
Sep 19th 2016

Whether being used to customize advertising to millions of website visitors or streamline inventory ordering at a small restaurant, data is becoming more integral to success. Too often, we’re not sure how use data to find answers to the questions that will make us more successful in what we do. In this course, you will discover what data is and think about what questions you have that can be answered by the data – even if you’ve never thought about data before. Based on existing data, you will learn to develop a research question, describe the variables and their relationships, calculate basic statistics, and present your results clearly. By the end of the course, you will be able to use powerful data analysis tools – either SAS or Python – to manage and visualize your data, including how to deal with missing data, variable groups, and graphs. Throughout the course, you will share your progress with others to gain valuable feedback, while also learning how your peers use data to answer their own questions.

Average: 7.3 (6 votes)
Sep 19th 2016

This two-part course introduces the basic mathematical and programming principles that underlie much of Computer Science. Understanding these principles is crucial to the process of creating efficient and well-structured solutions for computational problems. To get hands-on experience working with these concepts, we will use the Python programming language.

Average: 6.1 (9 votes)
Sep 19th 2016

This two-part course is designed to help students with very little or no computing background learn the basics of building simple interactive applications. Our language of choice, Python, is an easy-to learn, high-level computer language that is used in many of the computational courses offered on Coursera.

Average: 5.1 (16 votes)

Pages

 

Tell your friends: