E.g., 2016-06-30
E.g., 2016-06-30
E.g., 2016-06-30
Aug 2016

You've learned the basic algorithms now and are ready to step into the area of more complex problems and algorithms to solve them. Advanced algorithms build upon basic ones and use new ideas. We will start with networks flows which are used in more obvious applications such as optimal matchings, finding disjoint paths and flight scheduling as well as more surprising ones like image segmentation in computer vision or finding dense clusters in the advertiser-search query graphs at search engines. We then proceed to linear programming with applications in optimizing budget allocation, portfolio optimization, finding the cheapest diet satisfying all requirements, call routing in telecommunications and many others. Next we discuss inherently hard problems for which no exact good solutions are known (and not likely to be found) and how to solve them approximately in a reasonable time. We finish with some applications to Big Data and Machine Learning which are heavy on algorithms right now.

Average: 5 (5 votes)
May 30th 2016

Learn about the most effective machine learning techniques, and gain practice implementing them and getting them to work for yourself. Machine learning is the science of getting computers to act without being explicitly programmed. In the past decade, machine learning has given us self-driving cars, practical speech recognition, effective web search, and a vastly improved understanding of the human genome.

Average: 8.5 (15 votes)
May 30th 2016

Case Studies: Analyzing Sentiment & Loan Default Prediction
In our case study on analyzing sentiment, you will create models that predict a class (positive/negative sentiment) from input features (text of the reviews, user profile information,...). In our second case study for this course, loan default prediction, you will tackle financial data, and predict when a loan is likely to be risky or safe for the bank.

Average: 10 (1 vote)
May 30th 2016

Case Study - Predicting Housing Prices
In our first case study, predicting house prices, you will create models that predict a continuous value (price) from input features (square footage, number of bedrooms and bathrooms,...). This is just one of the many places where regression can be applied. Other applications range from predicting health outcomes in medicine, stock prices in finance, and power usage in high-performance computing, to analyzing which regulators are important for gene expression.In this course, you will explore regularized linear regression models for the task of prediction and feature selection. You will be able to handle very large sets of features and select between models of various complexity. You will also analyze the impact of aspects of your data -- such as outliers -- on your selected models and predictions. To fit these models, you will implement optimization algorithms that scale to large datasets.

No votes yet
May 30th 2016

Are you interested in predicting future outcomes using your data? This course helps you do just that! Machine learning is the process of developing, testing, and applying predictive algorithms to achieve this goal. Make sure to familiarize yourself with course 3 of this specialization before diving into these machine learning concepts. Building on Course 3, which introduces students to integral supervised machine learning concepts, this course will provide an overview of many additional concepts, techniques, and algorithms in machine learning, from basic classification to decision trees and clustering.

Average: 9 (2 votes)
May 30th 2016

One of the most common tasks performed by data scientists and data analysts are prediction and machine learning. This course will cover the basic components of building and applying prediction functions with an emphasis on practical applications. The course will provide basic grounding in concepts such as training and tests sets, overfitting, and error rates. The course will also introduce a range of model based and algorithmic machine learning methods including regression, classification trees, Naive Bayes, and random forests. The course will cover the complete process of building prediction functions including data collection, feature creation, algorithms, and evaluation.

Average: 5 (6 votes)
May 30th 2016

Have you ever had the perfect data science experience? The data pull went perfectly. There were no merging errors or missing data. Hypotheses were clearly defined prior to analyses. Randomization was performed for the treatment of interest. The analytic plan was outlined prior to analysis and followed exactly. The conclusions were clear and actionable decisions were obvious. Has that every happened to you? Of course not. Data analysis in real life is messy. How does one manage a team facing real data analyses? In this one-week course, we contrast the ideal with what happens in real life. By contrasting the ideal, you will learn key concepts that will help you manage real life analyses.

No votes yet
May 30th 2016

By now you have definitely heard about data science and big data. In this one-week class, we will provide a crash course in what these terms mean and how they play a role in successful organizations. This class is for anyone who wants to learn what all the data science action is about, including those who will eventually need to manage data scientists. The goal is to get you up to speed as quickly as possible on data science without all the fluff. We've designed this course to be as convenient as possible without sacrificing any of the essentials.

No votes yet
May 23rd 2016

Do you have data and wonder what it can tell you? Do you need a deeper understanding of the core ways in which machine learning can improve your business? Do you want to be able to converse with specialists about anything from regression and classification to deep learning and recommender systems? In this course, you will get hands-on experience with machine learning from a series of practical case-studies.

Average: 3.8 (5 votes)
May 23rd 2016

Want to learn the basics of large-scale data processing? Need to make predictive models but don’t know the right tools? This course will introduce you to open source tools you can use for parallel, distributed and scalable machine learning.

No votes yet
May 2nd 2016

Learn how to apply selected statistical and machine learning techniques and tools to analyse big data. Everyone has heard of big data. Many people have big data. But only some people know what to do with big data when they have it. So what’s the problem? Well, the big problem is that the data is big—the size, complexity and diversity of datasets increases every day. This means that we need new technological or methodological solutions for analysing data. There is a great demand for people with the skills and know-how to do big data analytics.

No votes yet
Apr 15th 2016

Learn the principles of machine learning and the importance of algorithms. Machine Learning is a growing field that is used when searching the web, placing ads, credit scoring, stock trading and for many other applications. This data science course is an introduction to machine learning and algorithms. You will develop a basic understanding of the principles of machine learning and derive practical solutions using predictive analytics. We will also examine why algorithms play an essential role in Big Data analysis.

Average: 9 (1 vote)
Mar 31st 2016

Learn how to use Spark in Microsoft Azure HDInsight to create predictive analytics and machine learning solutions. In this four-week course, you’ll learn how to implement predictive analytics solutions using Spark in Microsoft Azure HDInsight.

No votes yet
Mar 14th 2016

Aimed at a general business audience, this course demystifies artificial intelligence, provides an overview of a wide range of cognitive technologies, and offers a framework to help you understand their business implications. Some experts have called artificial intelligence "more important than anything since the industrial revolution."[i] That makes this course essential for professionals working in business, operations, strategy, IT, and other disciplines. Throughout the course, participants will build a knowledge base on cognitive technologies to equip them to engage in discussions with colleagues, customers, and suppliers and help them shape cognitive technology strategy in their organization.

Average: 8.6 (5 votes)
Jan 25th 2016

Learn the principles of machine learning and the importance of algorithms.

No votes yet
Nov 15th 2015

Learn key concepts of data science and machine learning with examples on how to build a cloud data science solution with R, Python and Azure Machine Learning from the Cortana Analytics Suite.

No votes yet
Nov 10th 2015

The course extends the fundamental tools in "Machine Learning Foundations" to powerful and practical models by three directions, which includes embedding numerous features, combining predictive features, and distilling hidden features. [這門課將先前「機器學習基石」課程中所學的基礎工具往三個方向延伸為強大而實用的工具。這三個方向包括嵌入大量的特徵、融合預測性的特徵、與萃取潛藏的特徵。]

Average: 4 (1 vote)
Sep 8th 2015

Machine learning is the study that allows computers to adaptively improve their performance with experience accumulated from the data observed. The course teaches the most fundamental algorithmic, theoretical and practical tools that any user of machine learning needs to know.

Average: 9.5 (2 votes)
Jun 29th 2015

Learn the underlying principles required to develop scalable machine learning pipelines and gain hands-on experience using Apache Spark.

Average: 10 (2 votes)
Self Paced Course - Start anytime

Can we program machines to learn like humans? This Reinforcement Learning course will teach you the algorithms for designing self-learning agents like us!

No votes yet

Pages

 

Tell your friends: