Statistics & Data Analysis

 

 


 

Data science is one of today’s fastest-growing fields. Become a Data Scientist in 2016 with Coursera.



Customize your search:

E.g., 2016-12-04
E.g., 2016-12-04
E.g., 2016-12-04
Feb 1st 2017

Digital images of earth’s surface produced by remote sensing are the basis of modern mapping. They are also used to create valuable information products across a spectrum of industries. This free online course is for everyone who is interested in applications of earth imagery to increase productivity, save money, protect the environment, and even save lives.

Average: 3.8 (5 votes)
Dec 5th 2016

This course will provide you with an overview over existing data products and a good understanding of the data collection landscape. With the help of various examples you will learn how to identify which data sources likely matches your research question, how to turn your research question into measurable pieces, and how to think about an analysis plan.

Average: 10 (1 vote)
Dec 5th 2016

In this course you will learn how to create models for decision making. We will start with cluster analysis, a technique for data reduction that is very useful in market segmentation. You will then learn the basics of Monte Carlo simulation that will help you model the uncertainty that is prevalent in many business decisions.

No votes yet
Dec 5th 2016

Data analysis has replaced data acquisition as the bottleneck to evidence-based decision making --- we are drowning in it. Extracting knowledge from large, heterogeneous, and noisy datasets requires not only powerful computing resources, but the programming abstractions to use them effectively. The abstractions that emerged in the last decade blend ideas from parallel databases, distributed systems, and programming languages to create a new class of scalable data analytics platforms that form the foundation for data science at realistic scales.

Average: 6.5 (6 votes)
Dec 5th 2016

This course focuses on the concepts and tools behind reporting modern data analyses in a reproducible manner. Reproducible research is the idea that data analyses, and more generally, scientific claims, are published with their data and software code so that others may verify the findings and build upon them. The need for reproducibility is increasing dramatically as data analyses become more complex, involving larger datasets and more sophisticated computations. Reproducibility allows for people to focus on the actual content of a data analysis, rather than on superficial details reported in a written summary.

Average: 8 (1 vote)
Dec 5th 2016

Do you have data and wonder what it can tell you? Do you need a deeper understanding of the core ways in which machine learning can improve your business? Do you want to be able to converse with specialists about anything from regression and classification to deep learning and recommender systems? In this course, you will get hands-on experience with machine learning from a series of practical case-studies.

Average: 5.4 (8 votes)
Dec 5th 2016

The use of Excel is widespread in the industry. It is a very powerful data analysis tool and almost all big and small businesses use Excel in their day to day functioning. This course is designed to give you a working knowledge of Excel with the aim of getting to use it for more advance topics in Business Statistics.

Average: 6 (1 vote)
Dec 5th 2016

This course explores Excel as a tool for solving business problems. In this course you will learn the basic functions of excel through guided demonstration. Each week you will build on your excel skills and be provided an opportunity to practice what you’ve learned. Finally, you will have a chance to put your knowledge to work in a final project.

Average: 2 (4 votes)
Dec 5th 2016

This course introduces you to sampling and exploring data, as well as basic probability theory and Bayes' rule. You will examine various types of sampling methods, and discuss how such methods can impact the scope of inference. A variety of exploratory data analysis techniques will be covered, including numeric summary statistics and basic data visualization.

Average: 7.7 (3 votes)
Dec 5th 2016

In this second MOOC in the Social Marketing Specialization - "The Importance of Listening" - you will go deep into the Big Data of social and gain a more complete picture of what can be learned from interactions on social sites. You will be amazed at just how much information can be extracted from a single post, picture, or video. In this MOOC, guest speakers from Social Gist, BroadReader, Lexalytics, Semantria, Radian6, and IBM's Bluemix and Social Media Analytics Tools (SMA) will join Professor Hlavac to take you through the full range of analytics tools and options available to you and how to get the most from them. The best part, most of them will be available to you through the MOOC for free! Those purchasing the MOOC will receive special tools, templates, and videos to enhance your learning experience.

Average: 7.7 (7 votes)
Dec 5th 2016

Statistical experiment design and analytics are at the heart of data science. In this course you will design statistical experiments and analyze the results using modern methods. You will also explore the common pitfalls in interpreting statistical arguments, especially those associated with big data. Collectively, this course will help you internalize a core set of practical and effective machine learning methods and concepts, and apply them to solve some real world problems.

Average: 7.9 (8 votes)
Dec 5th 2016

This course covers the essential exploratory techniques for summarizing data. These techniques are typically applied before formal modeling commences and can help inform the development of more complex statistical models. Exploratory techniques are also important for eliminating or sharpening potential hypotheses about the world that can be addressed by the data. We will cover in detail the plotting systems in R as well as some of the basic principles of constructing data graphics. We will also cover some of the common multivariate statistical techniques used to visualize high-dimensional data.

Average: 7 (4 votes)
Dec 5th 2016

Inferential statistics are concerned with making inferences based on relations found in the sample, to relations in the population. Inferential statistics help us decide, for example, whether the differences between groups that we see in our data are strong enough to provide support for our hypothesis that group differences exist in general, in the entire population.

Average: 7.8 (4 votes)
Dec 5th 2016

Want to understand your data network structure and how it changes under different conditions? Curious to know how to identify closely interacting clusters within a graph? Have you heard of the fast-growing area of graph analytics and want to learn more? This course gives you a broad overview of the field of graph analytics so you can learn new ways to model, store, retrieve and analyze graph-structured data. After completing this course, you will be able to model a problem into a graph database and perform analytical tasks over the graph in a scalable manner. Better yet, you will be able to apply these techniques to understand the significance of your data sets for your own projects.

No votes yet
Dec 5th 2016

This course will expose you to the data analytics practices executed in the business. We will explore such key areas of data analytics as the analytical process, how data is created, stored, and accessed, and how the organization works with data and creates the environment in which analytics can flourish.

No votes yet
Dec 5th 2016

Recent years have seen a dramatic growth of natural language text data, including web pages, news articles, scientific literature, emails, enterprise documents, and social media such as blog articles, forum posts, product reviews, and tweets. Text data are unique in that they are usually generated directly by humans rather than a computer system or sensors, and are thus especially valuable for discovering knowledge about people’s opinions and preferences, in addition to many other kinds of knowledge that we encode in text.

No votes yet
Dec 5th 2016

Understanding statistics is essential to understand research in the social and behavioral sciences. In this course you will learn the basics of statistics; not just how to calculate them, but also how to evaluate them. This course will also prepare you for the next course in the specialization - the course Inferential Statistics.

Average: 9 (5 votes)
Dec 5th 2016

This course will expose you to the data analytics practices executed in the business. We will explore such key areas of data analytics as the analytical process, how data is created, stored, and accessed, and how the organization works with data and creates the environment in which analytics can flourish.

Average: 1 (1 vote)
Dec 5th 2016

Learn the general concepts of data mining along with basic methodologies and applications. Then dive into one subfield in data mining: pattern discovery.

Average: 8 (1 vote)
Dec 5th 2016

Organizations large and small are inundated with data about consumer choices. Knowing how to interpret data is the challenge -- and marketers in particular are increasingly expected to use analytics to inform and justify their decisions. This course gives you the tools to measure brand and customer assets, perform regression analysis, and design experiments as a way to evaluate and optimize marketing campaigns.

Average: 1 (1 vote)

Pages