Data science is one of today’s fastest-growing fields. Become a Data Scientist in 2016 with Coursera.



E.g., 2016-04-28
E.g., 2016-04-28
E.g., 2016-04-28
May 2nd 2016

Get an overview of the data, questions, and tools that data analysts and data scientists work with. This is the first course in the Johns Hopkins Data Science Specialisation. In this course you will get an introduction to the main tools and ideas in the data scientist's toolbox. The course gives an overview of the data, questions, and tools that data analysts and data scientists work with. There are two components to this course. The first is a conceptual introduction to the ideas behind turning data into actionable knowledge. The second is a practical introduction to the tools that will be used in the program like version control, markdown, git, Github, R, and Rstudio.

Average: 3.3 (11 votes)
May 2nd 2016

This course is for novice programmers or business people who'd like to understand more advanced tools used to wrangle and analyze big data. In this course you will be guided in basic approaches to querying and exploring data using higher level tools built on top of a Hadoop Platform. You will be walked through query interfaces, environments, and the canonical situations for tools like HBASE, HIVE, Pig, as well as more general tools like Spark-SQL. After this course you will be able to identify the kinds of analysis you can get of big data and how to interpret these results.

No votes yet
May 2nd 2016

In this course you will learn how to program in R and how to use R for effective data analysis. You will learn how to install and configure software necessary for a statistical programming environment and describe generic programming language concepts as they are implemented in a high-level statistical language. The course covers practical issues in statistical computing which includes programming in R, reading data into R, accessing R packages, writing R functions, debugging, profiling R code, and organizing and commenting R code. Topics in statistical data analysis will provide working examples.

Average: 4.9 (10 votes)
May 2nd 2016

You will find this course exciting and rewarding if you already have a background in statistics, can use R or another programming language and are familiar with databases and data analysis techniques such as regression, classification, and clustering. However, it contains a number of recitals and R Studio tutorials which will consolidate your competences, enable you to play more freely with data and explore new features and statistical functions in R.

No votes yet
May 2nd 2016

What’s the “hype” surrounding the Big Data phenomenon? Who are these mysterious data scientists everyone is talking about? What kinds of problem-solving skills and knowledge should they have? What kinds of problems can be solved by Big Data technology? After this short introductory course you will have answers to all these questions. Additionally, you will start to become proficient with the key technical terms and big data tools and applications to prepare you for a deep dive into the rest of the courses in the Big Data specialization.

No votes yet
May 2nd 2016

Before you can work with data you have to get some. This course will cover the basic ways that data can be obtained. The course will cover obtaining data from the web, from APIs, from databases and from colleagues in various formats. It will also cover the basics of data cleaning and how to make data “tidy”. Tidy data dramatically speed downstream data analysis tasks. The course will also cover the components of a complete data set including raw data, processing instructions, codebooks, and processed data. The course will cover the basics needed for collecting, cleaning, and sharing data.

Average: 5.3 (9 votes)
May 2nd 2016

Over the past several decades, operations strategy has played an increasingly important role in business’ success. In this course, we will equip you with concepts and tools to build operations in a way that not only supports your competitive strategy, but also allows you to create new opportunities in the market place.

No votes yet
May 2nd 2016

In business, data and algorithms create economic value when they reduce uncertainty about financially important outcomes. This course teaches the concepts and mathematical methods behind the most powerful and universal metrics used by Data Scientists to evaluate the uncertainty-reduction – or information gain - predictive models provide. We focus on the two most common types of predictive model - binary classification and linear regression - and you will learn metrics to quantify for yourself the exact reduction in uncertainty each can offer. These metrics are applicable to any form of model that uses new information to improve predictions cast in the form of a known probability distribution – the standard way of representing forecasts in data science.

Average: 10 (1 vote)
May 2nd 2016

This course is RESTRICTED TO LEARNERS ENROLLED IN Strategic Business Analytics SPECIALIZATION as a preparation to the capstone project. During the first two MOOCs, we focused on specific techniques for specific applications. Instead, with this third MOOC, we provide you with different examples to open your mind to different applications from different industries and sectors. The objective is to give you an helicopter overview on what's happening in this field. You will see how the tools presented in the two previous courses of the Specialization are used in real life projects.

Average: 8 (1 vote)
May 2nd 2016

Linear models, as their name implies, relates an outcome to a set of predictors of interest using linear assumptions. Regression models, a subset of linear models, are the most important statistical analysis tool in a data scientist’s toolkit. This course covers regression analysis, least squares and inference using regression models. Special cases of the regression model, ANOVA and ANCOVA will be covered as well. Analysis of residuals and variability will be investigated. The course will cover modern thinking on model selection and novel uses of regression models including scatterplot smoothing.

Average: 10 (1 vote)
May 2nd 2016

Want to understand your data network structure and how it changes under different conditions? Curious to know how to identify closely interacting clusters within a graph? Have you heard of the fast-growing area of graph analytics and want to learn more? This course gives you a broad overview of the field of graph analytics so you can learn new ways to model, store, retrieve and analyze graph-structured data. After completing this course, you will be able to model a problem into a graph database and perform analytical tasks over the graph in a scalable manner. Better yet, you will be able to apply these techniques to understand the significance of your data sets for your own projects.

No votes yet
May 2nd 2016

Learn how to apply selected statistical and machine learning techniques and tools to analyse big data. Everyone has heard of big data. Many people have big data. But only some people know what to do with big data when they have it. So what’s the problem? Well, the big problem is that the data is big—the size, complexity and diversity of datasets increases every day. This means that we need new technological or methodological solutions for analysing data. There is a great demand for people with the skills and know-how to do big data analytics.

No votes yet
May 2nd 2016

In this course, you will learn best practices for how to use data analytics to make any company more competitive and more profitable. You will be able to recognize the most critical business metrics and distinguish them from mere data. You’ll get a clear picture of the vital but different roles business analysts, business data analysts, and data scientists each play in various types of companies. And you’ll know exactly what skills are required to be hired for, and succeed at, these high-demand jobs.

No votes yet
May 2nd 2016

A data product is the production output from a statistical analysis. Data products automate complex analysis tasks or use technology to expand the utility of a data informed model, algorithm or inference. This course covers the basics of creating data products using Shiny, R packages, and interactive graphics. The course will focus on the statistical fundamentals of creating a data product that can be used to tell a story about data to a mass audience.

Average: 2.5 (6 votes)
May 2nd 2016

This course is for novice programmers or business people who'd like to understand the core tools used to wrangle and analyze big data. With no prior experience, you'll have the opportunity to walk through hands-on examples with Hadoop and Spark frameworks, two of the most common in the industry. You will be comfortable explaining the specific components and basic processes of the Hadoop architecture, software stack, and execution environment. In the assignments you will be guided in how data scientists apply the important concepts and techniques, such as Map-Reduce that are used to solve fundamental problems in big data. You'll feel empowered to have conversations about big data and the data analysis processes.

Average: 6.3 (3 votes)
May 2nd 2016

One of the skills that characterizes great business data analysts is the ability to communicate practical implications of quantitative analyses to any kind of audience member. Even the most sophisticated statistical analyses are not useful to a business if they do not lead to actionable advice, or if the answers to those business questions are not conveyed in a way that non-technical people can understand. In this course you will learn how to become a master at communicating business-relevant implications of data analyses.

Average: 8 (1 vote)
May 2nd 2016

By now you have definitely heard about data science and big data. In this one-week class, we will provide a crash course in what these terms mean and how they play a role in successful organizations. This class is for anyone who wants to learn what all the data science action is about, including those who will eventually need to manage data scientists. The goal is to get you up to speed as quickly as possible on data science without all the fluff. We've designed this course to be as convenient as possible without sacrificing any of the essentials.

No votes yet
May 2nd 2016

One of the most common tasks performed by data scientists and data analysts are prediction and machine learning. This course will cover the basic components of building and applying prediction functions with an emphasis on practical applications. The course will provide basic grounding in concepts such as training and tests sets, overfitting, and error rates. The course will also introduce a range of model based and algorithmic machine learning methods including regression, classification trees, Naive Bayes, and random forests. The course will cover the complete process of building prediction functions including data collection, feature creation, algorithms, and evaluation.

Average: 5 (6 votes)
May 2nd 2016

Understand how randomized evaluations can be used to evaluate social and development programs. Learn why evaluations matter and how they can be used to rigorously measure the social impact of development programs. This practical course will provide a thorough understanding of randomized evaluations, with pragmatic step-by-step training for conducting one’s own evaluation.

No votes yet
May 2nd 2016

This course focuses on one of the most important tools in your data analysis arsenal: regression analysis. Using either SAS or Python, you will begin with linear regression and then learn how to adapt when two variables do not present a clear linear relationship. You will examine multiple predictors of your outcome and be able to identify confounding variables, which can tell a more compelling story about your results. You will learn the assumptions underlying regression analysis, how to interpret regression coefficients, and how to use regression diagnostic plots and other tools to evaluate the quality of your regression model. Throughout the course, you will share with others the regression models you have developed and the stories they tell you.

Average: 6 (3 votes)

Pages

 

Tell your friends: