Self Paced

Data Wrangling with MongoDB (Udacity)

Created by: Delivered by:
Taught by:

In this course, we will explore how to wrangle data from diverse sources and shape it to enable data-driven applications. Some data scientists spend the bulk of their time doing this! Students will learn how to gather and extract data from widely used data formats. They will learn how to assess the quality of data and explore best practices for data cleaning. We will also introduce students to MongoDB, covering the essentials of storing data and the MongoDB query language together with exploratory analysis using the MongoDB aggregation framework.

This is a great course for those interested in entry-level data science positions as well as current business/data analysts looking to add big data to their repertoire, and managers working with data professionals or looking to leverage big data.

At the end of the class, students should be able to:

- Programmatically extract data stored in common formats such as csv, Microsoft Excel, JSON, XML and scrape web sites to parse data from HTML.

- Audit data for quality (validity, accuracy, completeness, consistency, and uniformity) and critically assess options for cleaning data in different contexts.

- Store, retrieve, and analyze data using MongoDB.

This course concludes with a final project where students incorporate what they have learned to address a real-world data analysis problem.