STARTS

Nov 14th 2017

Solar Energy: Photovoltaic (PV) Energy Conversion (edX)

Created by:Delivered by:

Understand how solar cells generate electricity. Learn about semiconductor physics and optics required to design and manufacture solar cells. The key factor in getting more efficient and cheaper solar energy panels is the advance in the development of photovoltaic cells. In this course you will learn how photovoltaic cells convert solar energy into useable electricity. You will also discover how to tackle potential loss mechanisms in solar cells.

By understanding the semiconductor physics and optics involved, you will develop in-depth knowledge of how a photovoltaic cell works under different conditions. You will learn how to model all aspects of a working solar cell. For engineers and scientists working in the photovoltaic industry, this course is an absolute must to understand the opportunities for solar cell innovation.

This course is part of the Solar Energy Engineering MicroMasters Program designed to cover all physics and engineering aspects of photovoltaics: photovoltaic energy conversion, technologies and systems.


What you'll learn

- The principles behind the potential loss mechanisms in photovoltaic devices

- The semiconductor physics necessary to understand solar cell performance and engineering

- The optics and light management tools necessary for optimal solar cell design

- To model all aspects of a working solar cell, understanding the efficiency limits and design rules


Course Syllabus


Week 1: Introduction

How do solar cells convert solar energy into electrical energy? What are the basic building blocks of a solar cell?


Week 2: Semiconductor Basics

What are semiconductors? What is a band diagram?


Week 3: Generation and Recombination

What are the physics of charge carriers?


Week 4: The P-N Junction

What is a diode? How does a diode change when we apply a voltage? What about when we illuminate it with solar energy?


Week 5: Advanced Concepts in Semiconductors

What happens when we connect a semiconductor to a metal? What other types of junctions of semiconductor materials are important for solar cells?


Week 6: Light management 1: Refraction/Dispersion/Refraction

Which optical phenomena are important for solar cells? How can we use them to make sure maximal light is absorbed.


Week 7: Light management 2: Light Scattering

Which techniques can we use to scatter light in our solar cell to enhance optical path length?


Week 8: Electrical Losses

Pull all the concepts together to understand how to engineer solar cells.


Week 9 to 10: final exam (proctored for ID verified learners)


Week 11: resit of the (proctored) exam

Finish all assignments and problem sets.


Already taken this course? Please rate.
Average: 6 (2 votes)