Applied Data Science with Python Specialization

The 5 courses in this University of Michigan specialization introduce learners to data science through the python programming language. This skills-based specialization is intended for learners who have basic a python or programming background, and want to apply statistical, machine learning, information visualization, text analysis, and social network analysis techniques through popular python toolkits such as pandas, matplotlib, scikit-learn, nltk, and networkx to gain insight into their data.
Introduction to Data Science in Python (course 1), Applied Plotting, Charting & Data Representation in Python (course 2), and Applied Machine Learning in Python (course 3) should be taken in order and prior to any other course in the specialization. After completing those, courses 4 and 5 can be taken in any order. All 5 are required to earn a certificate.
WHAT YOU WILL LEARN
-Conduct an inferential statistical analysis
-Discern whether a data visualization is good or bad
-Enhance a data analysis with applied machine learning
-Analyze the connectivity of a social network

Sort options

Applied Text Mining in Python (Coursera)

This course will introduce the learner to text mining and text manipulation basics. The course begins with an understanding of how text is handled by python, the structure of text both to the machine and to humans, and an overview of the nltk framework for manipulating text. The second [...]

Applied Machine Learning in Python (Coursera)

This course will introduce the learner to applied machine learning, focusing more on the techniques and methods than on the statistics behind these methods. The course will start with a discussion of how machine learning is different than descriptive statistics, and introduce the scikit learn toolkit through a tutorial. [...]

Introduction to Data Science in Python (Coursera)

This course will introduce the learner to the basics of the python programming environment, including fundamental python programming techniques such as lambdas, reading and manipulating csv files, and the numpy library. The course will introduce data manipulation and cleaning techniques using the popular python pandas data science library and [...]

Applied Plotting, Charting & Data Representation in Python (Coursera)

This course will introduce the learner to information visualization basics, with a focus on reporting and charting using the matplotlib library. The course will start with a design and information literacy perspective, touching on what makes a good and bad visualization, and what statistical measures translate into in terms [...]

Applied Social Network Analysis in Python (Coursera)

This course will introduce the learner to network analysis through the NetworkX library. The course begins with an understanding of what network analysis is and motivations for why we might model phenomena as networks. The second week introduces the concept of connectivity and network robustness.. The third [...]