ChengXiang Zhai

 

 


 

ChengXiang Zhai is a Professor of Computer Science at the University of Illinois at Urbana-Champaign, where he also holds a joint appointment at the Institute for Genomic Biology, Statistics, and the Graduate School of Library and Information Science. He received a Ph.D. in Computer Science from Nanjing University in 1990, and a Ph.D. in Language and Information Technologies from Carnegie Mellon University in 2002. He worked at Clairvoyance Corp. as a Research Scientist and a Senior Research Scientist from 1997 to 2000. His research interests include information retrieval, text mining, natural language processing, machine learning, and bioinformatics. He is an Associate Editor of ACM Transactions on Information Systems, and Information Processing and Management, and serves on the editorial board of Information Retrieval Journal. He is a program co-chair of ACM CIKM 2004 , NAACL HLT 2007, and ACM SIGIR 2009. He is an ACM Distinguished Scientist, and received the 2004 Presidential Early Career Award for Scientists and Engineers (PECASE), the ACM SIGIR 2004 Best Paper Award, an Alfred P. Sloan Research Fellowship in 2008, and an IBM Faculty Award in 2009.

More info here.




Customize your search:

E.g., 2016-12-04
E.g., 2016-12-04
E.g., 2016-12-04
Dec 5th 2016

Recent years have seen a dramatic growth of natural language text data, including web pages, news articles, scientific literature, emails, enterprise documents, and social media such as blog articles, forum posts, product reviews, and tweets. Text data are unique in that they are usually generated directly by humans rather than a computer system or sensors, and are thus especially valuable for discovering knowledge about people’s opinions and preferences, in addition to many other kinds of knowledge that we encode in text.

No votes yet
Nov 28th 2016

This course will cover the major techniques for mining and analyzing text data to discover interesting patterns, extract useful knowledge, and support decision making, with an emphasis on statistical approaches that can be generally applied to arbitrary text data in any natural language with no or minimum human effort.

Average: 6.5 (2 votes)