Reinforcement Learning Specialization

The Reinforcement Learning Specialization consists of 4 courses exploring the power of adaptive learning systems and artificial intelligence (AI).
Harnessing the full potential of artificial intelligence requires adaptive learning systems. Learn how Reinforcement Learning (RL) solutions help solve real-world problems through trial-and-error interaction by implementing a complete RL solution from beginning to end.
By the end of this Specialization, learners will understand the foundations of much of modern probabilistic artificial intelligence (AI) and be prepared to take more advanced courses or to apply AI tools and ideas to real-world problems. This content will focus on “small-scale” problems in order to understand the foundations of Reinforcement Learning, as taught by world-renowned experts at the University of Alberta, Faculty of Science.
The tools learned in this Specialization can be applied to game development (AI), customer interaction (how a website interacts with customers), smart assistants, recommender systems, supply chain, industrial control, finance, oil & gas pipelines, industrial control systems, and more.
- Build a Reinforcement Learning system for sequential decision making.
- Understand the space of RL algorithms (Temporal- Difference learning, Monte Carlo, Sarsa, Q-learning, Policy Gradients, Dyna, and more).
- Understand how to formalize your task as a Reinforcement Learning problem, and how to begin implementing a solution.
- Understand how RL fits under the broader umbrella of machine learning, and how it complements deep learning, supervised and unsupervised learning

Sort options

Prediction and Control with Function Approximation (Coursera)

In this course, you will learn how to solve problems with large, high-dimensional, and potentially infinite state spaces. You will see that estimating value functions can be cast as a supervised learning problem---function approximation---allowing you to build agents that carefully balance generalization and discrimination in order to maximize [...]
No votes yet

Sample-based Learning Methods (Coursera)

In this course, you will learn about several algorithms that can learn near optimal policies based on trial and error interaction with the environment---learning from the agent’s own experience. Learning from actual experience is striking because it requires no prior knowledge of the environment’s dynamics, yet can still attain [...]
Average: 4 ( 4 votes )

A Complete Reinforcement Learning System (Capstone) (Coursera)

In this final course, you will put together your knowledge from Courses 1, 2 and 3 to implement a complete RL solution to a problem. This capstone will let you see how each component---problem formulation, algorithm selection, parameter selection and representation design---fits together into a complete solution, and how [...]
No votes yet

Fundamentals of Reinforcement Learning (Coursera)

Reinforcement Learning is a subfield of Machine Learning, but is also a general purpose formalism for automated decision-making and AI. This course introduces you to statistical learning techniques where an agent explicitly takes actions and interacts with the world. Understanding the importance and challenges of learning agents that make [...]
No votes yet