PCA

 

 


 

Customize your search:

E.g., 2017-02-20
E.g., 2017-02-20
E.g., 2017-02-20
Feb 27th 2017

Exploratory multivariate data analysis is studied and teached in a French-way since a long time in France. This course focuses on four essential and basic methods, those with the largest potential in terms of applications: principal component analysis (PCA) when variables are quantitative, correspondence analysis (CA) and multiple correspondence analysis (MCA) when variables are categorical and clustering. This course has been designed for scientists whose aim is not to become statisticians but who feel the need to analyze the data themselves. It is therefore addressed to practitioners who are confronted with the analysis of data in marketing, surveys, ecology, biology, geography, etc.

No votes yet
Apr 21st 2014

Learn both theory and application for basic methods that have been invented either for developing new concepts – principal components or clusters, or for finding interesting correlations – regression and classification. This is preceded by a thorough analysis of 1D and 2D data.

No votes yet