Electrodynamics Specialization

If you want to apply electrodynamics to your materials research project, this Specialization will help you do so. Electromagnetic force is one of the fundamental forces that hold atoms and molecules together, which are the building blocks of any materials.In four courses, you will learn the foundations of electrodynamics starting from the nature of electrical force up to the level of in-depth solutions of Maxwell equations. We will walk you through vector calculus, concepts of field, flux and circulation, electrostatics, and magnetostatics as well as electrodynamics. By the end of this Specialization you will understand four beautiful equations organized by Maxwell in a full picture. Special relativity will be covered as well to grasp the idea that magnetism is a relativistic effect of electricity. The approach taken in this Specialization complements traditional approaches, covering a fairly complete treatment of the physics of electricity and magnetism, and adds Feynman’s unique and vital approach of grasping a whole picture of the physical universe. In addition, this Specialization uniquely bridges the gap between the knowledge of electrodynamics and its practical applications to research in materials science, information technology, electrical engineering, chemistry, chemical engineering, energy storage, energy harvesting, and other materials related fields.

Sort options

Electrodynamics: An Introduction (Coursera)

The depth and breadth of electromagnetism, the foundation for many fields including materials science, electrical engineering, and physical chemistry, requires a long, steep, and steady learning curve. This course aims to bridge the gap between the fundamental principles taught in electromagnetism and its practical application to specific fields such [...]

Electrodynamics: In-depth Solutions for Maxwell’s Equations (Coursera)

This course is the fourth course in the Electrodynamics series, and is directly proceeded by Electrodynamics: Electric and Magnetic Fields. Previously, we have learned about visualization of fields and solutions which were not time dependent. Here, we will return to Maxwell's Equations and use them to produce [...]

Electrodynamics: Analysis of Electric Fields (Coursera)

This course is a continuation of Electrodynamics: An Introduction. Here, we will cover different methods of calculating an electric field. In addition, we will introduce polarization, dielectrics, and how electric fields create dipoles.

Electrodynamics: Electric and Magnetic Fields (Coursera)

This course is a continuation of Electrodynamics: An Introduction and Electrodynamics: Analysis of Electric Fields. Here, we will introduce magnetostatics and relate it to the material we learned previously. In addition, we will cover the basics of the electromotive force and how it can be used to build [...]