MOOC List is learner-supported. When you buy through links on our site, we may earn an affiliate commission.
MOOC List is learner-supported. When you buy through links on our site, we may earn an affiliate commission.
You will learn not only how to solve challenging technical problems, but also how you can apply those solutions in everyday life.
With examples ranging from medical testing to sports prediction, you will gain a strong foundation for the study of statistical inference, stochastic processes, randomized algorithms, and other subjects where probability is needed.
What you'll learn
- How to think about uncertainty and randomness
- How to make good predictions
- The story approach to understanding random variables
- Common probability distributions used in statistics and data science
- Methods for finding the expected value of a random quantity
- How to use conditional probability to approach complicated problems
Prerequisites
Familiarity with U.S. high school level algebra concepts; Single-variable calculus: familiarity with matrices. derivatives and integrals.
Not all units require Calculus, the underlying concepts can be learned concurrently with a Calculus course or on your own for self-directed learners.
Units 1-3 require no calculus or matrices; Units 4-6 require some calculus, no matrices; Unit 7 requires matrices, no calculus.
Previous probability or statistics background not required.
Syllabus
Unit 0: Introduction, Course Orientation, and FAQ
Unit 1: Probability, Counting, and Story Proofs
Unit 2: Conditional Probability and Bayes' Rule
Unit 3: Discrete Random Variables
Unit 4: Continuous Random Variables
Unit 5: Averages, Law of Large Numbers, and Central Limit Theorem
Unit 6: Joint Distributions and Conditional Expectation
Unit 7: Markov Chains
MOOC List is learner-supported. When you buy through links on our site, we may earn an affiliate commission.
MOOC List is learner-supported. When you buy through links on our site, we may earn an affiliate commission.