Dynamic Programming: Applications In Machine Learning and Genomics (edX)

Dynamic Programming: Applications In Machine Learning and Genomics (edX)
Course Auditing
Categories
Effort
Certification
Languages
Basic knowledge of: at least one programming language: loops, arrays, stacks, recursion. mathematics: proof by induction, proof by contradiction.
Misc

MOOC List is learner-supported. When you buy through links on our site, we may earn an affiliate commission.

Dynamic Programming: Applications In Machine Learning and Genomics (edX)
Learn how dynamic programming and Hidden Markov Models can be used to compare genetic strings and uncover evolution. If you look at two genes that serve the same purpose in two different species, how can you rigorously compare these genes in order to see how they have evolved away from each other?

Class Deals by MOOC List - Click here and see edX's Active Discounts, Deals, and Promo Codes.

MOOC List is learner-supported. When you buy through links on our site, we may earn an affiliate commission.

In the first part of the course, part of the Algorithms and Data Structures MicroMasters program, we will see how the dynamic programming paradigm can be used to solve a variety of different questions related to pairwise and multiple string comparison in order to discover evolutionary histories.

In the second part of the course, we will see how a powerful machine learning approach, using a Hidden Markov Model, can dig deeper and find relationships between less obviously related sequences, such as areas of the rapidly mutating HIV genome.


What you'll learn

- Dynamic programming and how it applies to basic string comparison algorithms

- Sequence alignment, including how to generalize dynamic programming algorithms to handle different cases

- Hidden markov models

- How to find the most likely sequence of events given a collection of outcomes and limited information

- Machine learning in sequence alignment


Course Syllabus


Week 1: Pairwise Sequence Alignment

A review of dynamic programming, and applying it to basic string comparison algorithms.


Week 2: Advanced Sequence Alignment

Learn how to generalize your dynamic programming algorithm to handle a number of different cases, including the alignment of multiple strings.


Week 3: Introduction to Hidden Markov Models

Learn what a Hidden Markov model is and how to find the most likely sequence of events given a collection of outcomes and limited information.


Week 4: Machine Learning in Sequence Alignment

Formulate sequence alignment using a Hidden Markov model, and then generalize this model in order to obtain even more accurate alignments.



10
Average: 10 ( 2 votes )

MOOC List is learner-supported. When you buy through links on our site, we may earn an affiliate commission.

Course Auditing
150.00 USD
Basic knowledge of: at least one programming language: loops, arrays, stacks, recursion. mathematics: proof by induction, proof by contradiction.

MOOC List is learner-supported. When you buy through links on our site, we may earn an affiliate commission.