MOOC List is learner-supported. When you buy through links on our site, we may earn an affiliate commission.

MOOC List is learner-supported. When you buy through links on our site, we may earn an affiliate commission.
This course is part of our Data Science Professional Certificate.
Very rarely is data easily accessible in a data science project. It's more likely for the data to be in a file, a database, or extracted from documents such as web pages, tweets, or PDFs. In these cases, the first step is to import the data into R and tidy the data, using the tidyverse package. The steps that convert data from its raw form to the tidy form is called data wrangling.
This process is a critical step for any data scientist. Knowing how to wrangle and clean data will enable you to make critical insights that would otherwise be hidden.
What you'll learn
- Importing data into R from different file formats
- Web scraping
- How to tidy data using the tidyverse to better facilitate analysis
- String processing with regular expressions (regex)
- Wrangling data using dplyr
- How to work with dates and times as file formats
- Text mining
MOOC List is learner-supported. When you buy through links on our site, we may earn an affiliate commission.
MOOC List is learner-supported. When you buy through links on our site, we may earn an affiliate commission.