Aprendizaje automático y ciencia de datos (edX)

Aprendizaje automático y ciencia de datos (edX)
Course Auditing
Categories
Effort
Certification
Languages
Misc

MOOC List is learner-supported. When you buy through links on our site, we may earn an affiliate commission.

Aprendizaje automático y ciencia de datos (edX)
Aprende a valorizar y extraer conocimiento a partir de los datos, usando técnicas y herramientas de análisis de datos genéricas, y aprendizaje automático en particular. El aprendizaje automático es una habilidad que toma cada vez más relevancia debido al gran número de datos (big data), los cuales deben de ser analizados para tomar decisiones.

Class Deals by MOOC List - Click here and see edX's Active Discounts, Deals, and Promo Codes.

MOOC List is learner-supported. When you buy through links on our site, we may earn an affiliate commission.

En este curso en línea aprenderás los conceptos básicos del aprendizaje automático (machine learning) y la ciencia de datos.En particular,aprenderáslas técnicas necesarias para evaluar el rendimiento de los algoritmos y de los modelos obtenidos. También aprenderás como preprocesar los datos para obtener así modelos de mayor calidad (simples, comprensibles, eficientes, etc.). Por último, en este curso de análisis de datos aprenderás a poner en funcionamiento las técnicas estudiadas mediante un ejemplo prácticoprogramando tus propios scripts y algoritmos en R.


Prerequisites:

El alumno ha de tener unos conocimientos básicos de programación, sin ningún lenguaje de programación en particular. Debe conocer lo que son vectores y matrices, a nivel muy básico. Es conveniente que conozca los indicadores estadísticos básicos (media, desviación típica, mediana, cuantiles, etc.), concepto de muestreo y nociones muy básicas (ofimáticas) con hojas de cálculo y tablas de datos.


What you'll learn

- Reconocer el valor de los datos en las organizaciones y las posibilidades de negocio que plantea su explotación para el desarrollo de productos basados en datos (inteligencia de negocios)

- Utilizar técnicas de aprendizaje automático, entre otras, para extraer modelos descriptivos y predictivos a partir de los datos, así como saber evaluarlos correctamente

- Conocer y utilizar las herramientas básicas de integración y preparación de datos, incluyendo visualización de datos, para facilitar la comprensión y el análisis de los datos

- Aprender a utilizar un lenguaje de programación de análisis de datos (lenguaje R) y las librerías básicas de visualización y algunas de las que permiten generar modelos de aprendizaje automático.


Syllabus


UNIDAD 1. Introducción al aprendizaje automático y la ciencia de datos

PRÁCTICA 1. Introducción al lenguaje R

UNIDAD 2. Evaluación de modelos de aprendizaje automático

PRÁCTICA 2. Evaluación de modelos de aprendizaje automático

UNIDAD 3. Técnicas básicas de aprendizaje automático

PRÁCTICA 3. Práctica de creación de modelos de aprendizaje automático

UNIDAD 4. Preprocesamiento de datos

PRÁCTICA 4. Visualización

PROYECTO



0
No votes yet

MOOC List is learner-supported. When you buy through links on our site, we may earn an affiliate commission.