Organic Electronic Devices (edX)

Start Date
No sessions available
Organic Electronic Devices (edX)
Course Auditing
Categories
Effort
Certification
Languages
This course is suited for undergraduates with two semesters of general chemistry and two semesters of general physics. Familiarity with solid-state physics or elementary circuits is recommended but not required.
Misc

MOOC List is learner-supported. When you buy through links on our site, we may earn an affiliate commission.

Organic Electronic Devices (edX)
Using molecules and polymers to create the next generation of electronic devices. Organic electronic devices are quickly making their way into the commercial world, with innovative thin mobile devices, high-resolution displays, and photovoltaic cells.

MOOC List is learner-supported. When you buy through links on our site, we may earn an affiliate commission.

The future holds even greater potential for this technology, with an entirely new generation of ultralow-cost, lightweight and even flexible electronic devices, which will perform functions traditionally accomplished with much more expensive components based on conventional semiconductor materials, such as silicon.




Learn more about this highly promising technology, which is based on small molecules and polymers, and how these materials can be implemented successfully in established (e.g., organic light-emitting devices (OLEDs), organic photovoltaic (OPV) devices) and emerging (e.g., thermoelectric (TE) generators) organic electronic modules.

In this course you will gain the ability to tie molecular transport phenomena with macroscopic device response such that you will be well-prepared to analyze, troubleshoot, and design the next generation of organic electronic materials and devices.

This course has short lectures with quizzes, homework, and exams.


What you'll learn

- Synthesis of Organic Semiconductors.

. Identify common mechanisms for the synthesis of small molecule and polymer semiconductors

. Describe the mechanism of controlled polymerization techniques for macromolecular semiconductors

. Interpret spectroscopic, chromatographic, and molecular characterization data in order to predict the structure of the organic semiconductor.

- Charge Generation and Transport and Optoelectronic Characterization of Organic Semiconductors.

. Explain how molecular orbital levels are related to the optoelectronic properties of organic semiconductors

. Distinguish between different models for charge transport in organic semiconductors; describe clearly the difference between charge generation and transport in organic and inorganic semiconductors.

- Device Application of Organic Semiconductors.

. Explain how organic electronic devices operate and how to apply known equations to evaluate device performance

. Critique the potential for organic electronic materials to supplement or replace inorganic semiconducting devices.



MOOC List is learner-supported. When you buy through links on our site, we may earn an affiliate commission.

Course Auditing
22.00 EUR
This course is suited for undergraduates with two semesters of general chemistry and two semesters of general physics. Familiarity with solid-state physics or elementary circuits is recommended but not required.

MOOC List is learner-supported. When you buy through links on our site, we may earn an affiliate commission.