Itsik Peer

 

 


 

Itsik Pe’er is an associate professor in the Department of Computer Science. His laboratory develops and applies computational methods for the analysis of high-throughput data in germline human genetics. Specifically, he has a strong interest in isolated populations such as Pacific Islanders and Ashkenazi Jews. The Pe’er Lab has developed methodology to identify hidden relatives — primarily in such isolated populations — that involves inferring their past demography, detecting associations between phenotypes and genetic segments co-inherited from the joint ancestors of hidden relatives, and establishing the exceptional utility of whole-genome sequencing in population genetics. With the arrival of high-throughput sequencing methods, Pe’er has focused on characterizing genetic variation that is unique to isolated populations, including the effects of such variation on phenotype.




Customize your search:

E.g., 2016-12-07
E.g., 2016-12-07
E.g., 2016-12-07
Apr 15th 2016

Learn the principles of machine learning and the importance of algorithms. Machine Learning is a growing field that is used when searching the web, placing ads, credit scoring, stock trading and for many other applications. This data science course is an introduction to machine learning and algorithms. You will develop a basic understanding of the principles of machine learning and derive practical solutions using predictive analytics. We will also examine why algorithms play an essential role in Big Data analysis.

Average: 8.5 (2 votes)