MOOC List is learner-supported. When you buy through links on our site, we may earn an affiliate commission.
MOOC List is learner-supported. When you buy through links on our site, we may earn an affiliate commission.
This course is centered on the concept of the transfer function of a system. Also called the system function, the transfer function completely describes the response of a system to any input signal in a highly conceptual manner. This visualization occurs not in the time domain, where we normally observe behavior of systems, but rather in the “frequency domain.” We need a device for moving from the time domain to the frequency domain; this is the Laplace transform.
We will illustrate these principles using concrete mechanical and electrical systems such as tuned mass dampers and RLC circuits.
This course is part of the 18.03x Differential Equations XSeries program.
Prerequisites:
18.031x (Introduction to Differential Equations)
What you'll learn
You’ll learn how to:
- Pass back and forth between the time domain and the frequency domain using the Laplace Transform and its inverse.
- Use a toolbox for computing with the Laplace Transform.
- Describe the behavior of systems using the pole diagram of the transfer function.
- Model for systems that have feedback loops.
- Model sudden changes with delta functions and other generalized functions.
Syllabus
- Review of differential equations
- System function and frequency response
- Laplace Transform
- Rules and applications
- Impulses and impulse response
- Convolution
- Feedback and filters
MOOC List is learner-supported. When you buy through links on our site, we may earn an affiliate commission.
MOOC List is learner-supported. When you buy through links on our site, we may earn an affiliate commission.