Train Machine Learning Models (Coursera)

Train Machine Learning Models (Coursera)
Course Auditing
Categories
Effort
Certification
Languages
Understand data science concepts, experience with programming languages (Python), libraries (NumPy,pandas) and database querying languages (SQL).
Misc

MOOC List is learner-supported. When you buy through links on our site, we may earn an affiliate commission.

Train Machine Learning Models (Coursera)
This course is designed for business professionals that wish to identify basic concepts that make up machine learning, test model hypothesis using a design of experiments and train, tune and evaluate models using algorithms that solve classification, regression and forecasting, and clustering problems. To be successful in this course a learner should have a background in computing technology, including some aptitude in computer programming.

Class Deals by MOOC List - Click here and see Coursera's Active Discounts, Deals, and Promo Codes.

MOOC List is learner-supported. When you buy through links on our site, we may earn an affiliate commission.

Course 4 of 5 in the CertNexus Certified Data Science Practitioner Professional Certificate.


Syllabus


WEEK 1

In the previous courses in the CDSP specialization, your data underwent a great deal of preparation. It's time to start looking at developing machine learning models. These models will be instrumental in achieving your business objectives because they can intelligently estimate much about the world. But before you start building these models, you need to have a firm grasp on what goes into machine learning and what it means to use machine learning to test a hypothesis.


WEEK 2

Develop Classification Models

The first type of machine learning task you'll build models for is classification. Classification has many applications across many different fields, so it's a good starting point. In this module, you'll train classification models, tune those models, and then evaluate them as part of a process of iterative improvement.


WEEK 3

Develop Regression Models

The next major machine learning task you'll undertake is regression. Whereas classification is about placing things in categories, regression is about estimating numbers. As with the previous module, in this module you'll train, tune, and then evaluate models that perform regression.


WEEK 4

Develop Clustering Models

You've built supervised learning models using both classification and regression. But now it's time to work with unsupervised learning, where labeled data is not readily available. In this module, you'll implement unsupervised learning in the form of clustering models, which can group observations that share common traits. Just like before, you'll develop these models as a process of training, tuning, and evaluation.


WEEK 5

Apply What You've Learned

You have developed models for classification, regression and clustering, in this module you will apply what you have learned working within a practical scenario. Using a Jupyter notebook you will perform machine learning tasks. You are given the choice of three notebooks, each of which leverages a different type of algorithm.



No votes yet

MOOC List is learner-supported. When you buy through links on our site, we may earn an affiliate commission.

Course Auditing
42.00 EUR/month
Understand data science concepts, experience with programming languages (Python), libraries (NumPy,pandas) and database querying languages (SQL).

MOOC List is learner-supported. When you buy through links on our site, we may earn an affiliate commission.