Mathematics for Data Science Specialization

Behind numerous standard models and constructions in Data Science there is mathematics that makes things work. It is important to understand it to be successful in Data Science. In this specialisation we will cover wide range of mathematical tools and see how they arise in Data Science. We will cover such crucial fields as Discrete Mathematics, Calculus, Linear Algebra and Probability. To make your experience more practical we accompany mathematics with examples and problems arising in Data Science and show how to solve them in Python.

Sort options

First Steps in Linear Algebra for Machine Learning (Coursera)

The main goal of the course is to explain the main concepts of linear algebra that are used in data analysis and machine learning. Another goal is to improve the student’s practical skills of using linear algebra methods in machine learning and data analysis. You will learn the fundamentals [...]
0
No votes yet

Calculus and Optimization for Machine Learning (Coursera)

Hi! Our course aims to provide necessary background in Calculus sufficient for up-following Data Science courses. Course starts with a basic introduction to concepts concerning functional mappings. Later students are assumed to study limits (in case of sequences, single- and multivariate functions), differentiability (once again starting from single variable [...]
0
No votes yet

Discrete Math and Analyzing Social Graphs (Coursera)

The main goal of this course is to introduce topics in Discrete Mathematics relevant to Data Analysis. We will start with a brief introduction to combinatorics, the branch of mathematics that studies how to count. Basics of this topic are critical for anyone working in Data Analysis or Computer [...]
0
No votes yet

Probability Theory, Statistics and Exploratory Data Analysis (Coursera)

Exploration of Data Science requires certain background in probability and statistics. This course introduces you to the necessary sections of probability theory and statistics, guiding you from the very basics all way up to the level required for jump starting your ascent in Data Science.
0
No votes yet