Machine Learning with TensorFlow on Google Cloud en Français Specialization

Qu'est-ce que le machine learning et quels types de problèmes permet-il de résoudre ? Quelles sont les cinq phases permettant de traiter un cas d'utilisation à l'aide du machine learning, et pourquoi chaque étape est-elle essentielle ? Pourquoi les réseaux de neurones sont-ils désormais si courants ? Comment définir un problème d'apprentissage supervisé et trouver une solution adaptée et généralisable à l'aide de la descente de gradient et d'une méthode pertinente de création d'ensembles de données ? Apprenez à créer des modèles de machine learning distribués qui pourront évoluer dans TensorFlow, à adapter l'entraînement de ces modèles pour bénéficier d'une évolutivité horizontale et à obtenir des prédictions très performantes. Convertissez les données brutes en caractéristiques de sorte que les processus de ML soient en mesure d'identifier les propriétés importantes dans les données et générez des insights qui ont du sens en rapport avec la problématique. Enfin, découvrez comment intégrer à la fois la combinaison de paramètres permettant d'obtenir des modèles précis et généralisés, et une connaissance de la théorie indispensable pour résoudre des types spécifiques de problèmes de ML.

Sort options

Launching into Machine Learning en Français (Coursera)

Dec 2nd 2024
Launching into Machine Learning en Français (Coursera)
Course Auditing
Categories
Effort
Languages
À partir de l'histoire du machine learning, nous examinons les raisons pour lesquelles les réseaux de neurones fonctionnent si bien de nos jours dans différents problèmes liés à la science des données. Nous évoquons ensuite la façon d'aborder un problème d'apprentissage supervisé et le moyen d'y répondre en utilisant [...]