Vector Calculus for Engineers (Coursera)

Vector Calculus for Engineers (Coursera)
Course Auditing
Categories
Effort
Certification
Languages
A course in single variable calculus.
Misc

MOOC List is learner-supported. When you buy through links on our site, we may earn an affiliate commission.

Vector Calculus for Engineers (Coursera)
Vector Calculus for Engineers covers both basic theory and applications. In the first week we learn about scalar and vector fields, in the second week about differentiating fields, in the third week about multidimensional integration and curvilinear coordinate systems. The fourth week covers line and surface integrals, and the fifth week covers the fundamental theorems of vector calculus, including the gradient theorem, the divergence theorem and Stokes’ theorem. These theorems are needed in core engineering subjects such as Electromagnetism and Fluid Mechanics.

MOOC List is learner-supported. When you buy through links on our site, we may earn an affiliate commission.

Instead of Vector Calculus, some universities might call this course Multivariable or Multivariate Calculus or Calculus 3. Two semesters of single variable calculus (differentiation and integration) are a prerequisite.

The course is organized into 42 short lecture videos, with a few problems to solve following each video. And after each substantial topic, there is a short practice quiz. Solutions to the problems and practice quizzes can be found in instructor-provided lecture notes. There are a total of four weeks to the course, and at the end of each week there is an assessed quiz.

Course 3 of 5 in the Mathematics for Engineers Specialization.


What You Will Learn

- Vectors, the dot product and cross product

- The gradient, divergence, curl, and Laplacian

- Multivariable integration, polar, cylindrical and spherical coordinates

- Line integrals, surface integrals, the gradient theorem, the divergence theorem and Stokes' theorem


Syllabus


WEEK 1

Vectors

A vector is a mathematical construct that has both length and direction. We will define vectors and learn how to add and subtract them, and how to multiply them using the scalar and vector products (dot and cross products). We will use vectors to learn some analytical geometry of lines and planes, and learn about the Kronecker delta and the Levi-Civita symbol to prove vector identities. The important concepts of scalar and vector fields will be introduced.


WEEK 2

Differentiation

Scalar and vector fields can be differentiated. We define the partial derivative and derive the method of least squares as a minimization problem. We learn how to use the chain rule for a function of several variables, and derive the triple product rule used in chemical engineering. From the del differential operator, we define the gradient, divergence, curl and Laplacian. We learn some useful vector calculus identities and how to derive them using the Kronecker delta and Levi-Civita symbol. Vector identities are then used to derive the electromagnetic wave equation from Maxwell's equation in free space. Electromagnetic waves form the basis for all modern communication technologies.


WEEK 3

Integration and Curvilinear Coordinates

Scalar and vector fields can be integrated. We learn about double and triple integrals, and line integrals and surface integrals. Curvilinear coordinates, namely polar coordinates in two dimensions, and cylindrical and spherical coordinates in three dimensions, are used to simplify problems with cylindrical or spherical symmetry. We learn how to change variables in multidimensional integrals using the Jacobian of the transformation.


WEEK 4

Line and Surface Integrals

Scalar or vector fields can be integrated on curves or surfaces. We learn how to take the line integral of a scalar field and use line integrals to compute arc lengths. We then learn how to take line integrals of vector fields by taking the dot product of the vector field with tangent unit vectors to the curve. Consideration of the line integral of a force field results in the work-energy theorem. Next, we learn how to take the surface integral of a scalar field and compute surface areas. We then learn how to take the surface integral of a vector field by taking the dot product of the vector field with the normal unit vector to the surface. The surface integral of a velocity field is used to define the mass flux of a fluid through the surface.
WEEK 5

Fundamental Theorems

The fundamental theorem of calculus links integration with differentiation. Here, we learn the related fundamental theorems of vector calculus. These include the gradient theorem, the divergence theorem, and Stokes' theorem. We show how these theorems are used to derive continuity equations, derive the law of conservation of energy, define the divergence and curl in coordinate-free form, and convert the integral version of Maxwell's equations into their more aesthetically pleasing differential form.



MOOC List is learner-supported. When you buy through links on our site, we may earn an affiliate commission.

Course Auditing
42.00 EUR/month
A course in single variable calculus.

MOOC List is learner-supported. When you buy through links on our site, we may earn an affiliate commission.