The course provides an introduction to statistics and data analysis. During the four week we will discus the most important methods and concepts of statistics.

STARTS

Mar 27th 2017

Created by:Delivered by:

Taught by:

This course introduces you to sampling and exploring data, as well as basic probability theory and Bayes' rule. You will examine various types of sampling methods, and discuss how such methods can impact the scope of inference. A variety of exploratory data analysis techniques will be covered, including numeric summary statistics and basic data visualization.

The concepts in this course will serve as building blocks for the inference and modeling courses in the Specialization.

Introduction to Probability and Data is course 1 of 5 in the Statistics with R Specialization.

**WEEK 1**

About Introduction to Probability and Data

This course introduces you to sampling and exploring data, as well as basic probability theory. You will examine various types of sampling methods and discuss how such methods can impact the utility of a data analysis. The concepts in this module will serve as building blocks for our later courses.Each lesson comes with a set of learning objectives that will be covered in a series of short videos. Supplementary readings and practice problems will also be suggested from OpenIntro Statistics, 3rd Edition (a free online introductory statistics textbook, that I co-authored). There will be weekly quizzes designed to assess your learning and mastery of the material covered that week in the videos. In addition, each week will also feature a lab assignment, in which you will use R to apply what you are learning to real data. There will also be a data analysis project designed to enable you to answer research questions of your own choosing.

Since this is a Coursera course, you are welcome to participate as much or as little as you’d like, though I hope that you will begin by participating fully. One of the most rewarding aspects of a Coursera course is participation in forum discussions about the course materials. Please take advantage of other students' feedback and insight and contribute your own perspective where you see fit to do so.

Introduction to Data

Welcome to Introduction to Probability and Data! I hope you are just as excited about this course as I am! In the next five weeks, we will learn about designing studies, explore data via numerical summaries and visualizations, and learn about rules of probability and commonly used probability distributions.

Graded: Week 1 Quiz

Graded: Week 1 Lab: Introduction to R and RStudio

**WEEK 2**

Exploratory Data Analysis and Introduction to Inference

Welcome to Week 2 of Introduction to Probability and Data! Hope you enjoyed materials from Week 1. This week we will delve into numerical and categorical data in more depth, and introduce inference.

Graded: Week 2 Quiz

Graded: Week 2 Lab: Introduction to Data

**WEEK 3**

Introduction to Probability

Welcome to Week 3 of Introduction to Probability and Data! Last week we explored numerical and categorical data. This week we will discuss probability, conditional probability, the Bayes’ theorem, and provide a light introduction to Bayesian inference. Thank you for your enthusiasm and participation, and have a great week! I’m looking forward to working with you on the rest of this course.

Graded: Week 3 Quiz

Graded: Week 3 Lab: Probability

**WEEK 4**

Probability Distributions

Great work so far! Welcome to Week 4 - the last content week of Introduction to Probability and Data! This week we will introduce two probability distributions: the normal and the binomial distributions in particular. As usual, you can evaluate your knowledge in this week's quiz. There will be no labs for this week.

Graded: Week 4 Quiz

**WEEK 5**

Data Analysis Project

Well done! You have reached the last week of Introduction to Probability and Data! There will not be any new videos in this week, instead, you will be asked to complete an initial data analysis project with a real-world data set. The project is designed to help you discover and explore research questions of your own, using real data and statistical methods we learn in this class. The project will be graded via peer assessments, meaning that you will need to evaluate three peers' projects after submitting your own.

Get started with your data analysis in this week! It should be interesting and very exciting!

Graded: Data Analysis Project