Ce cours d'introduction aux probabilités a la même contenu que le cours de tronc commun de première année de l'École polytechnique donné par Sylvie Méléard.

STARTS

May 29th 2017

Created by:Delivered by:

Ce cours d'introduction aux probabilités a la même contenu que le cours de tronc commun de première année de l'École polytechnique donné par Sylvie Méléard.

Le cours introduit graduellement la notion de variable aléatoire et culmine avec la loi des grands nombres et le théorème de la limite centrale.

Les notions mathématiques nécessaires sont introduites au fil du cours et de nombreux exercices corrigés sont proposés.

Ce cours propose aussi une introduction aux méthodes de simulations des variables aléatoires comme la méthode de Monte Carlo. Des expériences numériques interactives sont également mises à votre disposition pour vous permettre de visualiser diverses notions.

Already taken this course?

Please rate.

Please rate.

May 29th 2017

Ce cours d'introduction aux probabilités a la même contenu que le cours de tronc commun de première année de l'École polytechnique donné par Sylvie Méléard.

May 29th 2017

The purpose of this course is to review the material covered in the Fundamentals of Engineering (FE) exam to enable the student to pass it. It will be presented in modules corresponding to the FE topics, particularly those in Civil and Mechanical Engineering.

May 29th 2017

The abilities to understand and apply Business Statistics are becoming increasingly important in the industry. A good understanding of Business Statistics is a requirement to make correct and relevant interpretations of data. Lack of knowledge could lead to erroneous decisions which could potentially have negative consequences for a firm. This course is designed to introduce you to Business Statistics.

May 29th 2017

Data science courses contain math—no avoiding that! This course is designed to teach learners the basic math you will need in order to be successful in almost any data science math course and was created for learners who have basic math skills but may not have taken algebra or pre-calculus. Data Science Math Skills introduces the core math that data science is built upon, with no extra complexity, introducing unfamiliar ideas and math symbols one-at-a-time.

May 22nd 2017

This course introduces you to sampling and exploring data, as well as basic probability theory and Bayes' rule. You will examine various types of sampling methods, and discuss how such methods can impact the scope of inference. A variety of exploratory data analysis techniques will be covered, including numeric summary statistics and basic data visualization.

May 22nd 2017

This course introduces core areas of statistics that will be useful in business and for several MBA modules. It covers a variety of ways to present data, probability, and statistical estimation. You can test your understanding as you progress, while more advanced content is available if you want to push yourself.

May 22nd 2017

Understanding statistics is essential to understand research in the social and behavioral sciences. In this course you will learn the basics of statistics; not just how to calculate them, but also how to evaluate them. This course will also prepare you for the next course in the specialization - the course Inferential Statistics.

May 22nd 2017

Calculus is one of the grandest achievements of human thought, explaining everything from planetary orbits to the optimal size of a city to the periodicity of a heartbeat. This brisk course covers the core ideas of single-variable Calculus with emphases on conceptual understanding and applications. The course is ideal for students beginning in the engineering, physical, and social sciences.

May 15th 2017

This course will provide you with an intuitive and practical introduction into Probability Theory. You will be able to learn how to apply Probability Theory in different scenarios and you will earn a "toolbox" of methods to deal with uncertainty in your daily life.

May 8th 2017

Learn how probability, math, and statistics can be used to help baseball, football and basketball teams improve, player and lineup selection as well as in game strategy.

Multiple Criteria

Self-Paced MOOCs

MOOC List Coupon Discount

Providers and Categories

University / Entity

Instructor

Country

Language

Type of Certificate

Tag

Self-Paced MOOCs

MOOC List Coupon Discount

Providers and Categories

University / Entity

Instructor

Country

Language

Type of Certificate

Tag

“MOOC List” is an aggregator (directory) of Massive Open Online Courses (MOOCs) from different providers.

For more information please see our FAQs.

Terms / Privacy Policy | Contact Us

For more information please see our FAQs.

Terms / Privacy Policy | Contact Us

- MOOC stands for a Massive Open Online Course.
- It is an online course aimed at large-scale participation and open (free) access via the internet.
- They are similar to university courses, but do not tend to offer academic credit.
- A number of web-based platforms (providers Aka initiatives) supported by top universities and colleges offer MOOCs in a wide range of subjects.

MOOCs – Massive Open Online Courses – enable students around the world to take university courses online. This guide, by the instructors of edX’s most successful MOOC in 2013-2014, Principles of Written English (based on both enrollments and rate of completion), advises current and future students how to get the most out of their online study, covering areas such as what types of courses are offered and who offers them, what resources students need, how to register, how to work effectively with other students, how to interact with professors and staff, and how to handle assignments. This second edition offers a new chapter on how to stay motivated. This book is suitable for both native and non-native speakers of English, and is applicable to MOOC classes on any subject (and indeed, for just about any type of online study).