Chemistry

 

 


 

Customize your search:

E.g., 2017-08-17
E.g., 2017-08-17
E.g., 2017-08-17
Sep 5th 2017

Design new (bio)catalytic conversion routes to use biobased feedstocks to their highest potential as building blocks for chemicals, materials and fuels. Biomass is the only renewable feedstock which contains the carbon atoms needed to make the molecules to create chemicals, materials and fuels. However, the majority of our current scientific and industrial knowledge on conversion is based on processing fossil feedstocks. In this course we explore the relevant fundamental knowledge on (bio)catalytic conversion in order to produce (new) biobased building blocks, chemicals and products.

No votes yet
Self Paced

Top chefs and Harvard researchers explore how everyday cooking and haute cuisine can illuminate basic principles in physics and engineering. During each week of this course, chefs reveal the secrets behind some of their most famous culinary creations — often right in their own restaurants. Inspired by such cooking mastery, the Harvard team will then explain the science behind the recipe.

Average: 5.7 (7 votes)
Aug 21st 2017

During the four coming weeks, best experts in bitumen will bring you their knowledge and experience to build a strong understanding of today’s realities and new perspectives on the future of bitumen. Total is the European leader on bitumen markets. Innovation has always been the key to sustainability and durability in the products they develop. Their main objective here is to share technical knowledge and experience to insure bitumen are being used in the most effective and efficient ways for their different applications in road works.

Average: 6.7 (3 votes)

Aug 21st 2017

This course aims to provide a succinct overview of the emerging discipline of Materials Informatics at the intersection of materials science, computational science, and information science. Attention is drawn to specific opportunities afforded by this new field in accelerating materials development and deployment efforts.

Average: 7 (1 vote)
Aug 21st 2017

This is an introductory course for students with limited background in chemistry; basic concepts involved in chemical reactions, stoichiometry, the periodic table, periodic trends, nomenclature, and chemical problem solving will be emphasized with the goal of preparing students for further study in chemistry as needed for many science, health, and policy professions.

Average: 5.7 (3 votes)
Aug 21st 2017

Learn about novel sensing tools that make use of nanotechnology to screen, detect and monitor various events in personal or professional life. Together, we will lay the groundwork for infinite innovative applications, starting from diagnosis and treatments of diseases, continuing with quality control of goods and environmental aspects, and ending with monitoring security issues.

Average: 7.8 (4 votes)

Aug 21st 2017

This course will cover the topics of a full year, two semester General Chemistry course. We will use a free on-line textbook, Concept Development Studies in Chemistry, available via Rice’s Connexions project. The fundamental concepts in the course will be introduced via the Concept Development Approach developed at Rice University. In this approach, we will develop the concepts you need to know from experimental observations and scientific reasoning rather than simply telling you the concepts and then asking you to simply memorize or apply them.

Average: 3.3 (3 votes)
Aug 21st 2017

The course introduces the three key spectroscopic methods used by chemists and biochemists to analyse the molecular and electronic structure of atoms and molecules. These are UV/Visible , Infra-red (IR) and Nuclear Magnetic Resonance (NMR) spectroscopies.

No votes yet
Aug 21st 2017

Nanotechnology and nanosensors are broad, interdisciplinary areas that encompass (bio)chemistry, physics, biology, materials science, electrical engineering and more. The present course will provide a survey on some of the fundamental principles behind nanotechnology and nanomaterials and their vital role in novel sensing properties and applications. The course will discuss interesting interdisciplinary scientific and engineering knowledge at the nanoscale to understand fundamental physical differences at the nanosensors.

Average: 5 (10 votes)
Aug 14th 2017

This is an introductory course for students with limited background in chemistry; basic concepts such as atomic and molecular structure, solutions, phases of matter, and quantitative problem solving will be emphasized with the goal of preparing students for further study in chemistry.

Average: 7.8 (5 votes)
Aug 14th 2017

This course is an introduction to high-throughput experimental methods that accelerate the discovery and development of new materials.

Average: 8.5 (2 votes)

Aug 14th 2017

In this course you will learn a whole lot of modern physics (classical and quantum) from basic computer programs that you will download, generalize, or write from scratch, discuss, and then hand in. Join in if you are curious (but not necessarily knowledgeable) about algorithms, and about the deep insights into science that you can obtain by the algorithmic approach.

Average: 8.1 (7 votes)