Sports and Building Aerodynamics (Coursera)

Sports and Building Aerodynamics (Coursera)
Course Auditing
Categories
Effort
Certification
Languages
Misc

MOOC List is learner-supported. When you buy through links on our site, we may earn an affiliate commission.

Sports and Building Aerodynamics (Coursera)
Have we reached the boundaries of what can be achieved in sports and building design? The answer is definitely “NO”. This course explains basic aspects of bluff body aerodynamics, wind tunnel testing and Computational Fluid Dynamics (CFD) simulations with application to sports and building aerodynamics. It is intended for anyone with a strong interest in these topics. Key fields addressed are urban physics, wind engineering and sports aerodynamics.

MOOC List is learner-supported. When you buy through links on our site, we may earn an affiliate commission.

Syllabus


WEEK 1

Introduction movies & Basic aspects of fluid flow

This series of lectures outlines some basic aspects of fluid flow. It starts with the fluid properties velocity, pressure, temperature, density and viscosity. It continues with flow properties such as viscous versus inviscid flow, compressible versus incompressible flow, confined versus open flow, steady versus unsteady flow, stationary versus non-stationary flow and laminar versus turbulent flow. It also addresses some basic components of fluid statics, kinematics and dynamics. The last lectures are focused on the important concept of the boundary layer. Laminar versus turbulent boundary layers, boundary layer separation and obstacle form drag versus friction drag are explained. Finally, the module ends with a lecture on a special type of boundary layer: the atmospheric boundary layer, in which sports and building aerodynamics take place.


WEEK 2

Wind-tunnel testing

This series of lectures provides some fundamental aspects of wind-tunnel testing. First, the reasons why wind-tunnel testing is still important are outlined. Next, different types of wind tunnels and applications of wind-tunnel testing are discussed. As a special type of wind tunnel, the atmospheric boundary layer wind tunnel is described. Further lectures focus on the different wind-tunnel components, on measurements and flow visualization, on similarity and flow quality and on important best practice guidelines for high-quality wind-tunnel testing.


WEEK 3

Computational Fluid Dynamics

This series of lectures provides the basics of Computational Fluid Dynamics (CFD) with focus on application to Sports & Building Aerodynamics. First, the possibilities and limitations of CFD are outlined. Next, the main approaches for solving and modeling turbulent flow are explained, after which some basic aspects of discretization and near-wall modeling are described. After that, we focus on the important topics of errors, uncertainties, verification and validation in CFD. The series is concluded with two lectures that provide an overview of the past achievements and future challenges in Computational Wind Engineering.


WEEK 4

Building aerodynamics

The lecture series on Building Aerodynamics consists of 10 lectures. The first two lectures provide basic information about the wind flow around isolated buildings and generic building groups. Three lectures focus on the important problem of pedestrian-level wind discomfort and wind danger around buildings. One lecture addresses natural ventilation of buildings, focused on the ventilation study for a large football stadium in the Netherlands. Two lectures address wind-driven rain on building facades, and the final two lectures are devoted to wind energy in the built environment, where some important misconceptions are highlighted and explained.


WEEK 5

100 m sprint aerodynamics

This short lecture series addresses the aerodynamics of the 100 m sprint, including aerodynamic effects generated by the stadium. The first lecture explains the importance of aerodynamics in the 100 m sprint competition. Next, an existing mathematical-physical model of short-distance running is outlined. Based on this model, further lectures investigate wind effects and altitude effects on 100 m sprint performances and on potential world records. Finally, the potential influence of the geometry of the sports stadium on records established in it is explained, and the lecture series is concluded by an interview with a professional athletics coach.


WEEK 6

Cycling aerodynamics

The lecture series on cycling aerodynamics consists of 8 lectures. In the first lecture, the importance of aerodynamics in cycling is outlined. In the next two lectures, wind-tunnel testing of real and dummy cyclists is presented. The next lectures focus on CFD studies of the aerodynamics of a single cyclist, aerodynamics of two drafting cyclists and aerodynamics of drafting cyclist groups. After that, the aerodynamic interaction between a cyclist and a following car is studied. Finally, the series is concluded by an interview with two professional cycling coaches.


WEEK 7

Final quiz

The final quiz contains questions covering all 6 weeks. The minimum score to pass the course is 80%. 3 attempts can be taken. Partial feedback (correct / incorrect) will be given after every attempt. Points for multiple-choice questions with multiple correct answers are only obtained when all correct answers are labeled as such by the student.


WEEK 8

Peer-graded assignment

The peer-graded assignment includes the critical review of a scientific article based on the knowledge gained throughout the MOOC. The review consists of three parts: (1) performing a detailed study of the article; (2) providing a detailed answer to a set of specific questions; (3) grading at least 5 assignments of colleague students / peers.



MOOC List is learner-supported. When you buy through links on our site, we may earn an affiliate commission.

Course Auditing
41.00 EUR

MOOC List is learner-supported. When you buy through links on our site, we may earn an affiliate commission.